- Содержание «задач с параметрами» в программе математики средней школы на примере учебника А.Г. Мордковича

Презентация "Содержание «задач с параметрами» в программе математики средней школы на примере учебника А.Г. Мордковича" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11

Презентацию на тему "Содержание «задач с параметрами» в программе математики средней школы на примере учебника А.Г. Мордковича" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 11 слайд(ов).

Слайды презентации

Содержание «задач с параметрами» в программе математики средней школы на примере учебника А.Г. Мордковича Учитель математики МБОУ СОШ №95 Г. Казани Зиннурова Л.Д. 2014г.
Слайд 1

Содержание «задач с параметрами» в программе математики средней школы на примере учебника А.Г. Мордковича Учитель математики МБОУ СОШ №95 Г. Казани Зиннурова Л.Д. 2014г.

Нельзя утверждать, что вопрос о решении задач с параметрами не затрагивается в рамках школьного курса математики. Достаточно вспомнить школьные уравнения: ax2+bx+c=0, y=kx, y=kx+b, tgx=a, в которых a, b, c, k не что иное, что такое параметр, в чем его отличие от неизвестного. Рассмотрим понятие пара
Слайд 2

Нельзя утверждать, что вопрос о решении задач с параметрами не затрагивается в рамках школьного курса математики. Достаточно вспомнить школьные уравнения: ax2+bx+c=0, y=kx, y=kx+b, tgx=a, в которых a, b, c, k не что иное, что такое параметр, в чем его отличие от неизвестного. Рассмотрим понятие параметра. Параметр (от греческого слова parametron - отмеривающий) - величина, значение которой служат для различения некоторого множества между собой.

Под задачами с параметрами понимают задачи, в которых технический и логический ход решения и форма результата зависят от входящих в условие величин, численные значения которых не заданы конкретно, но должны считаться известными. В математике параметры вводятся для обозначения некоторого класса объектов, обладающих общими свойствами.

Если параметру, содержащемуся в уравнении (неравенстве) придать некоторое числовое значение, то возможен один из двух случаев: 1) получится уравнение (неравенство), содержащее лишь данные числа и неизвестные, и не содержащие параметров; 2)получится условие, лишенное смысла. В первом случае значение
Слайд 3

Если параметру, содержащемуся в уравнении (неравенстве) придать некоторое числовое значение, то возможен один из двух случаев: 1) получится уравнение (неравенство), содержащее лишь данные числа и неизвестные, и не содержащие параметров; 2)получится условие, лишенное смысла. В первом случае значение параметра называют допустимым, во втором - недопустимым. При решении задач допустимые значения параметров определяются из конкретного смысла. Например, для a < 0 значение выражения logax для любого x не определено.

Противоречивые характеристики параметра могут в самом начале изучения вызвать у учащихся определенные психологические трудности. В связи с этим на начальном пути знакомства с параметром очень полезно как можно чаще прибегать к наглядно-графической интерпретации полученных результатов. Это не только позволяет преодолеть естественную неуверенность ученика перед параметром, но и дает учителю возможность параллельно, в качестве пропедевтики, приучать учеников при решении задач с параметрами использовать графические приемы доказательства.

Развивающий характер уравнений и неравенств с параметрами определяется их способностью реализовывать многие виды мыслительной деятельности учащихся: 1. Выработка определенных алгоритмов мышления. 2. Умение определить наличие и количество корней в уравнении. 3. Решение семейств уравнений, являющихся
Слайд 4

Развивающий характер уравнений и неравенств с параметрами определяется их способностью реализовывать многие виды мыслительной деятельности учащихся: 1. Выработка определенных алгоритмов мышления. 2. Умение определить наличие и количество корней в уравнении. 3. Решение семейств уравнений, являющихся следствием данного. 4. Выражение одной переменной через другую. 5. Нахождение области определения уравнения. 6. Повторение большого объема формул при решении. 7. Значение соответствующих методов решения. 8. Широкое применение словесной и графической аргументации. 9. Развитие графической культуры учащихся.

Тематический анализ учебников А.Г. Мордковича «Алгебра.» 2007г 7 класс Учебник для 7 класса начинается с темы «Числовые и алгебраические выражения», которая содержит следующие задания №33-№35: При каких значениях переменной имеют смысл выражения Следующим заданием с параметрами можно называть упражн
Слайд 5

Тематический анализ учебников А.Г. Мордковича «Алгебра.» 2007г 7 класс Учебник для 7 класса начинается с темы «Числовые и алгебраические выражения», которая содержит следующие задания №33-№35: При каких значениях переменной имеют смысл выражения Следующим заданием с параметрами можно называть упражнения из главы «Линейные уравнения с двумя переменными» (№827 - 831), например, № 828. Найдите значение коэффициента а в уравнении ax + 5y - 40 = 0, если известно, что решением уравнения является пара чисел: а) (3;2);б) (9;-1);в) (1/3; 0);г) (-2; 2,4). В этой же главе присутствуют задания, в которых требуется выразить одну переменную через другую (№825, №826), эти задания, как уже говорилось выше, являются своего рода задачами с параметрами. № 825. Дано линейное уравнение с двумя переменными. Используя его, выразите каждую из переменных через другую: а) 3a + 8b = 24;б) 12m - 3n = 48

Параграф «Линейная функция и ее график» также содержит задания с параметрами, например, № 902. Найдите значение m, если известно, что график линейной функции y = -5x + m проходит через точку: а) N(1;2); б) K(0,5; 4); в) M(-7;8); г)P(1,2;-3). №907. Как расположен в координатной плоскости xOy график л
Слайд 6

Параграф «Линейная функция и ее график» также содержит задания с параметрами, например, № 902. Найдите значение m, если известно, что график линейной функции y = -5x + m проходит через точку: а) N(1;2); б) K(0,5; 4); в) M(-7;8); г)P(1,2;-3). №907. Как расположен в координатной плоскости xOy график линейной функции y = kx + m, если известно, что: а) k > 0, m = 0; б) k < 0, m = 0? В данном случае приведены несколько заданий с параметрами в главе «Системы двух линейных уравнений с двумя переменными», например задания: № 1075. Найдите значение коэффициента а в уравнении ax + 8y = 20, если известно, что решением этого уравнения является пара чисел: а) (2;1); б) (-3;-2). № 1076. Дана система уравнений. Известно, что пара чисел (5;6) является ее решением. Найдите значения a и b.

8 класс В учебнике для 8 класса по теме «квадратичная функция», помещены сравнительно простые задания № 483 - № 488, связанные с графиком квадратичной функции. Например: № 483. Найдите значение коэффициента с, если известно, что график функции y=x2+4x+c пересекает ось ординат в точке А(0;2). Далее с
Слайд 7

8 класс В учебнике для 8 класса по теме «квадратичная функция», помещены сравнительно простые задания № 483 - № 488, связанные с графиком квадратичной функции. Например: № 483. Найдите значение коэффициента с, если известно, что график функции y=x2+4x+c пересекает ось ординат в точке А(0;2). Далее следует более сложные задания с похожим содержанием (№ 498 - № 503). Например: № 500. При каких значениях коэффициента b и c точка А(1;-2) является вершиной параболы y=x2+bx+c? После данной темы рассматривается графическое решение квадратного уравнения, и даются упражнения, где параметр является правой частью уравнения (№ 518 - № 522). Например: № 518. При каком значении p уравнение x2-2x+1=p имеет один корень? № 522. При каких значениях p уравнение x2+6x+8=p: а) не имеет корней; б) имеет один корень; в) имеет два корня?

В главе 4 «Квадратные уравнения» понятие параметра впервые появляется в условии заданий №792-795. Например: № 793. При каких значениях параметра p уравнение (2p - 3)x2 + (3p - 6)x +p2 - 9 = 0 является: а) приведенным квадратным уравнением; б) неполным неприведенным квадратным уравнением; в) неполным
Слайд 8

В главе 4 «Квадратные уравнения» понятие параметра впервые появляется в условии заданий №792-795. Например: № 793. При каких значениях параметра p уравнение (2p - 3)x2 + (3p - 6)x +p2 - 9 = 0 является: а) приведенным квадратным уравнением; б) неполным неприведенным квадратным уравнением; в) неполным приведенным квадратным уравнением; г) линейным уравнением?

Затем в §20 «Формулы корней квадратного уравнения» в теоретической части дается определение параметра и уравнения с параметром на примере следующего уравнения: x2 - (2p + 1)x + (p2 + p - 2) =0. Это уравнение отличается от всех рассмотренных до этих пор квадратных уравнений тем, что в роли коэффициентов выступают не конкретные числа, а буквенные выражения и считаются уравнениями с параметрами. В данном случае параметр (буква) p входит в состав второго коэффициента и свободного члена уравнения.

Когда учащиеся решают квадратные уравнения с вычислением дискриминанта, им предлагаются упражнения 820, 821, 838 - 841. Например: № 838. ИЗ данных уравнений укажите те, которые имеют два различных корня при любом значении параметра p: а) x2 + px = 0; в) x2 + px + 5 = 0; б) x2 - px - 5 = 0; г) px2 -
Слайд 9

Когда учащиеся решают квадратные уравнения с вычислением дискриминанта, им предлагаются упражнения 820, 821, 838 - 841. Например: № 838. ИЗ данных уравнений укажите те, которые имеют два различных корня при любом значении параметра p: а) x2 + px = 0; в) x2 + px + 5 = 0; б) x2 - px - 5 = 0; г) px2 - 2 = 0. Эти задания сопровождаются заданиями на доказательство (№ 821, 842), например: № 842. Докажите, что не существует такого значения параметра p, при котором уравнение x2 - px + p - 2 = 0 имело бы только один корень.

При прохождении квадратных уравнений с четным вторым коэффициентом решается упражнение: № 953. Решите уравнение: а) x2 - 2(a - 1)x + a2 - 2a - 3 = 0; б) x2 + 2(a + 1)x + a2 + 2a - 8 Когда учащиеся знакомятся с теоремой Виета, выполняются упражнения № 971 и № 972.

№ 971. При каких значениях параметра p сумма корней квадратного уравнения x2 + (p2 + 4p - 5)x - p = 0 равно нулю?

В §35. «Решение квадратных неравенств» помещены упражнения № 1360 - 1365 с заданием решить квадратное уравнение, которое сводится к решению неравенств. № 1360. При каких значениях параметра p квадратное уравнение 3x2 - 2px - p + 6 = 0: а) имеет два различных корня; б) имеет один корень; в) не имеет
Слайд 10

В §35. «Решение квадратных неравенств» помещены упражнения № 1360 - 1365 с заданием решить квадратное уравнение, которое сводится к решению неравенств. № 1360. При каких значениях параметра p квадратное уравнение 3x2 - 2px - p + 6 = 0: а) имеет два различных корня; б) имеет один корень; в) не имеет корней? № 1366. При каких целочисленных значениях параметра p неравенство (x2 - 2)(x - p) < 0 имеет три целочисленных решения?

9 класс В учебнике для 9 класса упражнения с параметрами приводятся сначала в § 1 «Линейные и квадратные неравенства», в № 11, 17 - 19. № 11. При каких значениях параметра p квадратное уравнение 3x2 - 2px - p + 6 = 0: а) имеет два различных корня; б) имеет один корень; в) не имеет корней?

В § 2 «Рациональные неравенства» заданием с параметром является задание № 50: Найдите такое целое значение параметра p, при котором множество решений неравенства x(x + 2)(p - x) ≥ 0 содержит: а) два целых числа; в) три целых числа; б) четыре целых числа;г) пять целых чисел. В § 2 «системы рациональн
Слайд 11

В § 2 «Рациональные неравенства» заданием с параметром является задание № 50: Найдите такое целое значение параметра p, при котором множество решений неравенства x(x + 2)(p - x) ≥ 0 содержит: а) два целых числа; в) три целых числа; б) четыре целых числа;г) пять целых чисел. В § 2 «системы рациональных неравенств» задачами с параметрами являются задачи № 85 - 87. № 86. Укажите все значения параметра p, при которых решением системы неравенств является промежуток: а) (5; +∞); б) [3; +∞). Последний раз задания с параметрами встречаются в главе «Системы уравнений» (№ 117 - 119). В данном комплекте учебников и задачников достаточно хорошо подобраны задачи с параметрами в каждом классе основной школы. В учебнике 7 класса большое внимание уделяется пропедевтике уравнений с параметрами. В учебнике для 8 класса при прохождении темы квадратные уравнения» дается достаточно ясное определение параметра и уравнения с параметром. Но этого не достаточно для полного представления о методах решения задач с параметрами

Список похожих презентаций

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
Активизация мыслительной деятельности на уроках математики

Активизация мыслительной деятельности на уроках математики

Активные формы урока. Урок-лекция. Урок-консультация. Урок-практикум Урок-семинар Урок-зачёт. урок-лекция. Зачёт №2 по геометрии в 11 классе 1.Объясните, ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
«Действия с дробями», «Нахождение дроби и процентов от числа»

«Действия с дробями», «Нахождение дроби и процентов от числа»

Систематизация знаний по темам: «Действия с дробями», «Нахождение дроби и процентов от числа», Отработка практических навыков выполнения действий ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
«Старая сказка на новый лад»

«Старая сказка на новый лад»

3 268 :2 12 396:3 256 130:5 1634 51226. Полетели стрелы в разные стороны. Упала стрела царевича на царский двор. 1634 м. Стрела второго царевича улетела ...
"Все действия с обыкновенными дробями"

"Все действия с обыкновенными дробями"

Великие открытия ученых математиков ХХ века. «Математика является значительно большим, чем наука, поскольку она является языком науки». Нильс Бор, ...
«Моя математика» - задачи на нахождение целого или части

«Моя математика» - задачи на нахождение целого или части

МАТЕМАТИКА 1 3 4 5 7 6 8 9 0. Работа с числовым рядом. http://www.bajena.com/ru/kids/mathematics/sum-mathematics.php. 1. Прочитайте текст справа и ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
3 вида разложение многочлена на множители

3 вида разложение многочлена на множители

1 вид вынесение общего множителя за скобки. Что значит разложить многочлен на множители? Разложить многочлен на множители — это значит представить ...
«Действия с обыкновенными дробями (2)»

«Действия с обыкновенными дробями (2)»

Урок по теме «Действия с обыкновенными дробями». На острове Дробей. 1. Сократите дроби. 2. Исключите целую часть из числа. 3. Переведите число в неправильную ...
Авария на промышленном объекте

Авария на промышленном объекте

Цели урока:. Повторить материал по темам “ Площади криволинейных трапеций”, “Решение показательных уравнений”, выявить пробелы в знаниях и постараться ...
«Действия с дробями»

«Действия с дробями»

Цели урока:. Устный счет. Какая часть каждой фигуры окрашена? Есть ли на чертежах ошибки? Найдите их и назовите ошибку. Нет ли в чертежах ошибок? ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...

Конспекты

Алгоритм письменного деления многозначного числа на двузначное, трёхзначное число

Алгоритм письменного деления многозначного числа на двузначное, трёхзначное число

Открытый урок математики 4 класс. Тема: Алгоритм письменного деления многозначного числа на двузначное, трёхзначное число. Цель:. формирование ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Великие математики России. С.В. Ковалевская

Великие математики России. С.В. Ковалевская

План-конспект внеклассного мероприятия. «Великие математики России. С.В. Ковалевская». . ФИО. . Ракитина Эльвира Альбертовна. . ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
Векторы на плоскости

Векторы на плоскости

. Конспект. обобщающего урока по теме «Векторы на плоскости». . (геометрия 9 класс). Тема. Систематизация и обобщение изученного материала ...
В стране математики

В стране математики

Муниципальное образовательное учреждение. «Моркинская средняя (полная) общеобразовательная школа№2». Республики Марий Эл. План – конспект. ...
В стране математики

В стране математики

. . Муниципальное казенное дошкольное образовательное учреждение. «Детский сад компенсирующего вида №7 «Сказка». . . Конспект урока ...
В стране математики

В стране математики

. . Муниципальное казенное дошкольное образовательное учреждение. «Детский сад компенсирующего вида №7 «Сказка». . . Конспект урока. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...
Арифметические действия с многозначными числами

Арифметические действия с многозначными числами

Тема:. «Арифметические действия с многозначными числами». Цель:. закрепить навыки сложения, вычитания, умножения и деления многозначных чисел; ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:9 июля 2019
Категория:Математика
Содержит:11 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации