Презентация "«Вероятность»" (9 класс) по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27

Презентацию на тему "«Вероятность»" (9 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 27 слайд(ов).

Слайды презентации

Теория вероятностей и статистика 9 класс. Глава 12. Числовые характеристики случайных величин. 5klass.net
Слайд 1

Теория вероятностей и статистика 9 класс

Глава 12. Числовые характеристики случайных величин

5klass.net

Результаты обучения. В результате изучения материала главы 12 учащийся должен: знать определение математического ожидания конечной случайной величины, понимать, что математическое ожидание является обобщением среднего арифметического значений величины; знать свойства математического ожидания и уметь
Слайд 2

Результаты обучения. В результате изучения материала главы 12 учащийся должен: знать определение математического ожидания конечной случайной величины, понимать, что математическое ожидание является обобщением среднего арифметического значений величины; знать свойства математического ожидания и уметь использовать их при решении простых задач; знать, что важным свойством распределения случайной величины является рассеивание величины, уметь вычислять дисперсию и стандартное отклонение; знать формулы математического ожидания и дисперсии числа успехов в серии испытаний Бернулли.

П.53. Математическое ожидание случайной величины. Для введения понятия «математическое ожидание случайной величины» необходимо разобрать задачу п.53. Для проведения лотереи изготовили 100 билетов. Из них 1 билет с выигрышем в 500 р., 10 билетов с выигрышем по 100 р. и остальные 89 билетов без выигры
Слайд 3

П.53. Математическое ожидание случайной величины.

Для введения понятия «математическое ожидание случайной величины» необходимо разобрать задачу п.53. Для проведения лотереи изготовили 100 билетов. Из них 1 билет с выигрышем в 500 р., 10 билетов с выигрышем по 100 р. и остальные 89 билетов без выигрыша. Какой средний выигрыш соответствует 1 билету? Выигрыш является случайной величиной Х, которая может принимать значение 0;100; 500, с вероятностью 0,89; 0,1 и 0,01. Если покупатель приобретает все 100 билетов, то выигрыш составит 1500 руб, следовательно выигрыш, соответствующий одному билету в 100 раз меньше. 15 руб. (0·89+10·100+1·500):100 = 0·0,89+100·0,1+500·0,01=15. 15 руб – это среднее значение случайной величины. Оно называется математическим ожиданием случайной величины.

Рассмотрим случайную величину Х.Пусть распределение случайной величины Х задано таблицей. Обозначим математическое ожидание Е(Х). Определение. Математическим ожиданием случайной величины Х называют число Е(Х)=х1р1+х2р2+х3р3+ … + хnрn Е(а)=а·1. Математическое ожидание постоянной величины равняется эт
Слайд 4

Рассмотрим случайную величину Х.Пусть распределение случайной величины Х задано таблицей. Обозначим математическое ожидание Е(Х). Определение. Математическим ожиданием случайной величины Х называют число Е(Х)=х1р1+х2р2+х3р3+ … + хnрn Е(а)=а·1. Математическое ожидание постоянной величины равняется этой величине.

Задачи № 1. а),б),в).№2 решаются по формуле. №3. Е(Z) = (-8-6-4-2+2+4+6+8)·1/8=0. №4.Х- «число выпавших орлов» Е(Х)= 0·0,5+1·0,5=0,5
Слайд 5

Задачи № 1. а),б),в).№2 решаются по формуле. №3. Е(Z) = (-8-6-4-2+2+4+6+8)·1/8=0. №4.Х- «число выпавших орлов» Е(Х)= 0·0,5+1·0,5=0,5

№5.Y – «сумма очков, выпавших при двух бросаниях игральной кости» Е(Y)=2·1/36+3·2/36+4·3/36+5·4/36+6·5/36+7·6/36+8·5/36+ 9·4/36+10·3/36+11·2/36+12·1/36=7. Вернуться к этой задаче в п.54, при использовании свойств.
Слайд 6

№5.Y – «сумма очков, выпавших при двух бросаниях игральной кости» Е(Y)=2·1/36+3·2/36+4·3/36+5·4/36+6·5/36+7·6/36+8·5/36+ 9·4/36+10·3/36+11·2/36+12·1/36=7. Вернуться к этой задаче в п.54, при использовании свойств.

Задача № 9. Х – «число клеток в подбитом корабле» Е(Х)=0·0,8 +1·0,04 +2·0,06 +3·0,06+4·0,04 = 0,5. Е(Х) = 0,5.
Слайд 7

Задача № 9. Х – «число клеток в подбитом корабле» Е(Х)=0·0,8 +1·0,04 +2·0,06 +3·0,06+4·0,04 = 0,5. Е(Х) = 0,5.

Задача № 10. а). Х – «наибольшее из двух выпавших очков»
Слайд 8

Задача № 10. а). Х – «наибольшее из двух выпавших очков»

№10 (б). Х – «наименьшее из двух выпавших очков»
Слайд 9

№10 (б). Х – «наименьшее из двух выпавших очков»

П. 54. Свойства математического ожидания. Свойство1.Пусть Х – случайная величина, а – некоторое число. Рассмотрим случайную величину Y=аХ. Тогда Е(Y)=аЕ(Х). Свойство 2. Пусть U и V – две случайные величины. Тогда U + V – также случайная величина, и при этом Е(U+V) = E(U)+E(V). Это значит, что матема
Слайд 10

П. 54. Свойства математического ожидания

Свойство1.Пусть Х – случайная величина, а – некоторое число. Рассмотрим случайную величину Y=аХ. Тогда Е(Y)=аЕ(Х). Свойство 2. Пусть U и V – две случайные величины. Тогда U + V – также случайная величина, и при этом Е(U+V) = E(U)+E(V). Это значит, что математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Задача № 1. Х – «число очков, выпавших на одной игральной кости» Е(Х) = 3,5 Тогда при пяти бросаниях математическое ожидание равно а).3,5·5 = 17,5 б).3,5·7 = 24,5 в).3,5·100 = 350 г).3,5·k = 3,5k Задача № 2. Применение свойств.
Слайд 11

Задача № 1. Х – «число очков, выпавших на одной игральной кости» Е(Х) = 3,5 Тогда при пяти бросаниях математическое ожидание равно а).3,5·5 = 17,5 б).3,5·7 = 24,5 в).3,5·100 = 350 г).3,5·k = 3,5k Задача № 2. Применение свойств.

Задача № 3. р=1/11. Е(Х) = 1/11·(-3-2-1+0+1+2+3+4+5+6+7)=2 р = 1/9. Е(Y)= 1/9·(1+2+3+4+5+6+7+8+9) = 5 a). Z=X+Y, E(Z) = E(X)+E(Y) E(Z)= 2+5 = 7 б). Z=X-Y E(Z) = 2-5 = -3.
Слайд 12

Задача № 3. р=1/11. Е(Х) = 1/11·(-3-2-1+0+1+2+3+4+5+6+7)=2 р = 1/9. Е(Y)= 1/9·(1+2+3+4+5+6+7+8+9) = 5 a). Z=X+Y, E(Z) = E(X)+E(Y) E(Z)= 2+5 = 7 б). Z=X-Y E(Z) = 2-5 = -3.

Задача № 5. Т.к. бросаний 5, то всего событий 32. Х – «выпадение орлов» Е(Х)=1/32·(0+ 1·5+2·10+3·10+4·5+5·1)= 80 · 1/32 = 2,5 Е(Х) = 2,5 Задача № 6 разбирается подробно в п.58.
Слайд 13

Задача № 5. Т.к. бросаний 5, то всего событий 32. Х – «выпадение орлов» Е(Х)=1/32·(0+ 1·5+2·10+3·10+4·5+5·1)= 80 · 1/32 = 2,5 Е(Х) = 2,5 Задача № 6 разбирается подробно в п.58.

П.56- 57. Дисперсия и стандартное отклонение. Свойства дисперсии. Дисперсия - мера рассеивания.(п.55) Дисперсией случайной величины Х называют математическое ожидание случайной величины (Х –Е(Х))². D(X) = E((Х –Е(Х))²) Стандартное отклонение σ = √D(X) Свойства дисперсии. 1.Пусть Х – случайная величи
Слайд 14

П.56- 57. Дисперсия и стандартное отклонение. Свойства дисперсии.

Дисперсия - мера рассеивания.(п.55) Дисперсией случайной величины Х называют математическое ожидание случайной величины (Х –Е(Х))². D(X) = E((Х –Е(Х))²) Стандартное отклонение σ = √D(X) Свойства дисперсии. 1.Пусть Х – случайная величина. Рассмотрим случайную величину Y = аХ, где а - некоторое число. Тогда D(Y) =a²D(X) 2. Пусть Х – случайная величина . Рассмотрим случайную величину Y = X + a. Тогда D(Y) = D(X)

Задача № 2. Проводится одно испытание Бернулли, с вероятностью успеха р. Случайная величина S – «число успехов». Найти D(S). Е(S) = р D(X) = E((Х –Е(Х))²) D(S) = р²(1- р)+(1- р)²р = р(1- р)(р + 1- р) = р(1- р) = р - р²
Слайд 15

Задача № 2. Проводится одно испытание Бернулли, с вероятностью успеха р. Случайная величина S – «число успехов». Найти D(S). Е(S) = р D(X) = E((Х –Е(Х))²) D(S) = р²(1- р)+(1- р)²р = р(1- р)(р + 1- р) = р(1- р) = р - р²

Задача № 3. D(X) = E((Х –Е(Х))²) а).Е(Х) = -2·0,3+0·0,5+3·0,2=0 D(X)=4·0,3+0·0,5+9·0,2=1,2+1,8=3 б). Аналогично.
Слайд 16

Задача № 3. D(X) = E((Х –Е(Х))²) а).Е(Х) = -2·0,3+0·0,5+3·0,2=0 D(X)=4·0,3+0·0,5+9·0,2=1,2+1,8=3 б). Аналогично.

Задача №4.б). Вычислить дисперсию случайной величины Х. D(X) = E((Х –Е(Х))²) Е(Х) = 3 Е((Х-Е(Х))²) = 25·0,1+9·0,1+4·0,2+4·0,6= 6,6 D(X) = 6,6 Задачи № 5,6 решаются аналогично.
Слайд 17

Задача №4.б). Вычислить дисперсию случайной величины Х. D(X) = E((Х –Е(Х))²) Е(Х) = 3 Е((Х-Е(Х))²) = 25·0,1+9·0,1+4·0,2+4·0,6= 6,6 D(X) = 6,6 Задачи № 5,6 решаются аналогично.

Задача № 7. а). Случайная величина Х принимает значения от 0 до 6 с равными вероятностями, т.е. р =1/7. Найти D(X). D(X) = E((Х –Е(Х))²) Е(Х)=21·1/7 =3 Значения Х- Е(Х) от -3 до 3. Тогда D(Х)=4. б). Случайная величина Y принимает значения от 1 до 7, т.е. Y = Х + 1. Следовательно, по свойству дисперс
Слайд 18

Задача № 7. а). Случайная величина Х принимает значения от 0 до 6 с равными вероятностями, т.е. р =1/7. Найти D(X). D(X) = E((Х –Е(Х))²) Е(Х)=21·1/7 =3 Значения Х- Е(Х) от -3 до 3. Тогда D(Х)=4. б). Случайная величина Y принимает значения от 1 до 7, т.е. Y = Х + 1. Следовательно, по свойству дисперсии D(Y) = D(X). Т.е. D(Y) = 4.

Задача № 8. При решении используются свойства дисперсии. a). D(X) = 3, Y=3X, D(Y)= 9D(X), D(Y)=27 б). Y=X+5. D(Y)=D(X) D(Y)=3. е). Y=-5X-7. D(Y)= 25D(X)=75. Остальные решаются аналогично.
Слайд 19

Задача № 8. При решении используются свойства дисперсии. a). D(X) = 3, Y=3X, D(Y)= 9D(X), D(Y)=27 б). Y=X+5. D(Y)=D(X) D(Y)=3. е). Y=-5X-7. D(Y)= 25D(X)=75. Остальные решаются аналогично.

П. 58. Математическое ожидание числа успехов в серии испытаний Бернулли. Если S – число успехов в серии n независимых испытаний Бернулли с вероятностью успеха р, то Е(S) = np.
Слайд 20

П. 58. Математическое ожидание числа успехов в серии испытаний Бернулли

Если S – число успехов в серии n независимых испытаний Бернулли с вероятностью успеха р, то Е(S) = np.

Задача № 1. 2000 – окуней и 1000 – карасей. Всего 3000 рыб. Найти ожидаемое число карасей. E(S) = np S = 0;1; 2;4; …;30	Е(S) = 30p E(S) = 10
Слайд 21

Задача № 1. 2000 – окуней и 1000 – карасей. Всего 3000 рыб. Найти ожидаемое число карасей. E(S) = np S = 0;1; 2;4; …;30 Е(S) = 30p E(S) = 10

Задача № 3. n=120 а).S – «число очков кратно 3» При бросании игральной кости с равной вероятностью 1/6 выпадают 1, 2, 3,4,5,6. Успехов 2 (значения 3 и 6). Следовательно вероятность события Х при однократном бросании равна 1/3. Т.е. Е(S) = 120∙1/3 = 40. б). Аналогично.
Слайд 22

Задача № 3. n=120 а).S – «число очков кратно 3» При бросании игральной кости с равной вероятностью 1/6 выпадают 1, 2, 3,4,5,6. Успехов 2 (значения 3 и 6). Следовательно вероятность события Х при однократном бросании равна 1/3. Т.е. Е(S) = 120∙1/3 = 40. б). Аналогично.

Задача № 4. Вероятность успеха 0,25. Следовательно Е(S)=16·0.25=4. Т.е. ожидаемое число правильных ответов 4. Задача №5. Математическое ожидание случайной величины «число выпадений острием вверх» равно 135. n=300. Найти р. Е(S) = np. р·300 = 135, p = 0,45
Слайд 23

Задача № 4. Вероятность успеха 0,25. Следовательно Е(S)=16·0.25=4. Т.е. ожидаемое число правильных ответов 4. Задача №5. Математическое ожидание случайной величины «число выпадений острием вверх» равно 135. n=300. Найти р. Е(S) = np. р·300 = 135, p = 0,45

П. 59. Дисперсия числа успехов. Дисперсия числа успехов S в серии испытаний Бернулли вычисляется по формуле D(S) = npq. n – число испытаний Бернулли р – вероятность успеха q – вероятность неудачи
Слайд 24

П. 59. Дисперсия числа успехов.

Дисперсия числа успехов S в серии испытаний Бернулли вычисляется по формуле D(S) = npq. n – число испытаний Бернулли р – вероятность успеха q – вероятность неудачи

Задача № 1. n = 100 p = 0,36, следовательно q = 0,64. D(S) = 0,36·0,64·100 = 23,04 σ = √D(S) σ = √23,04 = 4,8 Задача № 2. а). Х – «выпавшее число очков кратно 3» D(X) = 3000
Слайд 25

Задача № 1. n = 100 p = 0,36, следовательно q = 0,64. D(S) = 0,36·0,64·100 = 23,04 σ = √D(S) σ = √23,04 = 4,8 Задача № 2. а). Х – «выпавшее число очков кратно 3» D(X) = 3000

Задача № 3. S – число попаданий серии выстрелов по мишени. р – вероятность попадания (вероятность успеха) Найти дисперсию величины S. а). D(X) = npq. р=0,3, тогда вероятность неудачи равна 0,7. число выстрелов равно 100. Тогда дисперсия равна 21. в). При 2500 выстрелах дисперсия равна 525.
Слайд 26

Задача № 3. S – число попаданий серии выстрелов по мишени. р – вероятность попадания (вероятность успеха) Найти дисперсию величины S. а). D(X) = npq. р=0,3, тогда вероятность неудачи равна 0,7. число выстрелов равно 100. Тогда дисперсия равна 21. в). При 2500 выстрелах дисперсия равна 525.

К задаче № 4 даны рекомендации в ответе.
Слайд 27

К задаче № 4 даны рекомендации в ответе.

Список похожих презентаций

Синус, косинус, тангенс и котангенс, алгебра,

Синус, косинус, тангенс и котангенс, алгебра,

Синус и косинус. Что будем изучать:. Определение синуса и косинуса. Определение тангенса и котангенса. Основное тригонометрическое тождество. Примеры ...
Тригонометрические функции углового аргумента - алгебра,

Тригонометрические функции углового аргумента - алгебра,

Тригонометрическая функция углового аргумента. Что будем изучать:. Определение. Примеры. Вспомним геометрию. Градусная мера угла. Радианная мера угла. ...
Матричная алгебра в экономике

Матричная алгебра в экономике

Содержание:. ● Вступление ● Что такое матрицы и операции над ними ● Решение экономических задач матричным методом ● Заключение ● Список используемой ...
Реляционная алгебра – механизм манипулирования реляционными данными

Реляционная алгебра – механизм манипулирования реляционными данными

Две группы операций РА. теоретико-множественные операции специальные реляционные операции. Теоретико-множественные операции. объединения отношений; ...
ГИА 2013. Модуль алгебра №6

ГИА 2013. Модуль алгебра №6

ГИА – 2013 г. Модуль «Алгебра» №6. «ГИА-2013. Математика: типовые экзаменационные варианты: 30 вариантов» под редакцией А. Л. Семенова, И. В. Ященко. ...
ГИА 2013. Модуль алгебра №8

ГИА 2013. Модуль алгебра №8

Модуль «Алгебра» №8. Повторение (4). Решите неравенство 7+2(х-4)≥х+4. Ответ: [-3;+∞). Повторение (подсказка). При решении неравенства можно переносить ...
ГИА 2013. Модуль алгебра №2

ГИА 2013. Модуль алгебра №2

Модуль «Алгебра» №2. Повторение (2). На координатной прямой отмечено число а. Из следующих неравенств выберите верное:. Ответ: 3. Исходя из рисунка ...
ГИА 2013. Модуль алгебра №3

ГИА 2013. Модуль алгебра №3

Модуль «Алгебра» №3. Наибольшее число :. Повторение (4). Укажите наибольшее из чисел:. Ответ: ⎕ ⎕ ⎕ ⎕. Повторение (подсказка). Чтобы сравнить выражения, ...
ГИА 2013. Модуль алгебра №1

ГИА 2013. Модуль алгебра №1

Модуль «Алгебра» №1. Повторение (1). Найдите значение выражения 0,5 ∙ 0,05 ∙ 0,005 . Ответ: 0,000125 0,5 ∙ 0,05 ∙ 0,005 = 1 + 3 6 000 =0,. Повторение ...
Высшая математика. Линейная алгебра

Высшая математика. Линейная алгебра

Содержание. Элементы линейной алгебры Задачи линейного программирования Графический метод решения ЗЛП Симплексный метод решения ЗЛП Двойственные задачи ...
Векторная алгебра

Векторная алгебра

Векторы. Определение. Вектором назовём направленный отрезок, т.е. отрезок прямой, ограниченный двумя точками, одна из которых называется начальной, ...
«Функции» алгебра

«Функции» алгебра

Производная. Производной функции f в точке х0 называется число, к которому стремится разностное отношение при Δх, стремящемся к нулю. Правила дифференцирования. ...
«Квадратичная функция» алгебра

«Квадратичная функция» алгебра

Формулы сокращенного умножения. 6. В каком случае выражение преобразовано в тождественно равное? 1) 3(x−y) = 3x−y 2) (3+x)(x−3) = 9−x2 3) (x−y)2 = ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:30 января 2019
Категория:Математика
Классы:
Содержит:27 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации