- Иррациональные числа в древности и средние века

Презентация "Иррациональные числа в древности и средние века" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12

Презентацию на тему "Иррациональные числа в древности и средние века" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 12 слайд(ов).

Слайды презентации

Иррациональные числа в древности и средние века.
Слайд 1

Иррациональные числа в древности и средние века.

Чисел рациональных из множества Q не хватает для того, чтобы сделать числовую прямую сплошной, или, как говорят математики, непрерывной. Нам нужны новые числа. Эти числа принято называть иррациональными. Раньше считали, что существуют только натуральные числа и числа, представляющие собой их отношен
Слайд 2

Чисел рациональных из множества Q не хватает для того, чтобы сделать числовую прямую сплошной, или, как говорят математики, непрерывной. Нам нужны новые числа. Эти числа принято называть иррациональными. Раньше считали, что существуют только натуральные числа и числа, представляющие собой их отношение, т.е. обыкновенные дроби. Иррациональные – значит не выражающиеся в виде такого отношения, не рациональные.

Сам факт существования таких удивительных чисел долго не укладывался в сознании учёных в древности, убеждённых в том, что всё в природе, все её явления и законы описываются законами, представляющими различные отношения целых чисел. А тут оказалось, что даже длина диагонали квадрата таким отношением
Слайд 3

Сам факт существования таких удивительных чисел долго не укладывался в сознании учёных в древности, убеждённых в том, что всё в природе, все её явления и законы описываются законами, представляющими различные отношения целых чисел. А тут оказалось, что даже длина диагонали квадрата таким отношением не описывается. Существует легенда, будто этот факт настолько потряс Пифагора и его учеников, что они решили скрыть его от всех.

Но, как это часто бывает со всякого рода тайнами, нашёлся некто Гиппас, который всё же не удержался и, как мы сказали бы теперь, разгласил запретную информацию. Легенда утверждает, что боги наказали его – он утонул во время кораблекрушения.
Слайд 4

Но, как это часто бывает со всякого рода тайнами, нашёлся некто Гиппас, который всё же не удержался и, как мы сказали бы теперь, разгласил запретную информацию. Легенда утверждает, что боги наказали его – он утонул во время кораблекрушения.

Древнегреческие математики классической эпохи не пользовались другими числами, кроме рациональных. В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически.
Слайд 5

Древнегреческие математики классической эпохи не пользовались другими числами, кроме рациональных. В своих «Началах» Евклид излагает учение об иррациональностях чисто геометрически.

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например корень из неквадратного числа, «алогос» - невыразимая
Слайд 6

Математики Индии, Ближнего и Среднего Востока, развивая алгебру, тригонометрию и астрономию, не могли обойтись без иррациональных величин, которые, однако, длительное время не признавали за числа. Греки называли иррациональную величину, например корень из неквадратного числа, «алогос» - невыразимая словами; арабы перевели этот термин, означающий так же «немой», словом «асамм», а позже европейские переводчики с арабского на латынь перевели это слово латинским словом surdus – глухой.

В Европе термин surdus – глухой впервые встречается в середине XII в. у Герарда Кремонского, затем у итальянского математика Леонардо Фибоначчи и других европейских математиков вплоть до XVIII в. Правда, уже в XVI в. отдельные учёные, в первую очередь итальянский математик Рафаэль Бомбелли и нидерла
Слайд 7

В Европе термин surdus – глухой впервые встречается в середине XII в. у Герарда Кремонского, затем у итальянского математика Леонардо Фибоначчи и других европейских математиков вплоть до XVIII в. Правда, уже в XVI в. отдельные учёные, в первую очередь итальянский математик Рафаэль Бомбелли и нидерландский математик Симон Стевин, считали понятие иррационального числа равноправным с понятием рационального числа.

Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью».
Слайд 8

Стевин писал: «Мы приходим к выводу, что не существует никаких абсурдных, иррациональных, неправильных, необъяснимых или глухих чисел, но что среди чисел существует такое совершенство и согласие, что нам надо размышлять дни и ночи над их удивительной закономерностью».

Ещё до Бомбелли и Стевина многие учёные стран Ближнего и Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В этом же направлении много было сд
Слайд 9

Ещё до Бомбелли и Стевина многие учёные стран Ближнего и Среднего Востока в своих трудах употребляли иррациональные числа как полноправные объекты алгебры. Омар Хайям уже в начале XII в. теоретически расширяет понятие числа до положительного действительного числа. В этом же направлении много было сделано крупнейшим математиком XIII в. ат – Туси.

Математики и астрономы Ближнего и Среднего Востока вслед за астрономами Древнего Вавилона широко пользовались шестидесятеричными дробями. По аналогии с шестидесятеричными дробями самаркандский учёный XV в. ал – Каши ввёл десятичные дроби, которыми он пользовался и для повышения точности извлечения к
Слайд 10

Математики и астрономы Ближнего и Среднего Востока вслед за астрономами Древнего Вавилона широко пользовались шестидесятеричными дробями. По аналогии с шестидесятеричными дробями самаркандский учёный XV в. ал – Каши ввёл десятичные дроби, которыми он пользовался и для повышения точности извлечения корней. Независимо от него в 1585 году десятичные дроби в Европе ввёл Симон Стевин. Таким образом, уже в XVI в. зародилась идея о том, что естественным формальным аппаратом для введения и обоснования понятия иррационального числа являются десятичные дроби.

Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков и необходимостью расширения рационального числа. В современных учебниках основа определения иррационального числа опирается на идеи ал – Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближени
Слайд 11

Появление «Геометрии» Декарта облегчило понимание связи между измерением любых отрезков и необходимостью расширения рационального числа. В современных учебниках основа определения иррационального числа опирается на идеи ал – Каши, Стевина и Декарта об измерении отрезков и о неограниченном приближении к искомому числу с помощью бесконечных десятичных дробей. Однако обоснование свойств действительных чисел и полная теория их была разработана лишь в XVIIII в.

Презентацию выполнил: Рябов Артём Ученик 11 Б класса Руководитель: Рябова Лилия Геннадьевна МОУ «Быстроистокская общеобразовательная средняя (полная) школа»
Слайд 12

Презентацию выполнил: Рябов Артём Ученик 11 Б класса Руководитель: Рябова Лилия Геннадьевна МОУ «Быстроистокская общеобразовательная средняя (полная) школа»

Список похожих презентаций

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Взаимно обратные числа"

"Взаимно обратные числа"

Цели урока:. ввести понятие взаимно обратных чисел; сформировать умение находить взаимно обратные числа при решении упражнений; повторить правило ...
«Действия с дробями», «Нахождение дроби и процентов от числа»

«Действия с дробями», «Нахождение дроби и процентов от числа»

Систематизация знаний по темам: «Действия с дробями», «Нахождение дроби и процентов от числа», Отработка практических навыков выполнения действий ...
"Умножение дробей, нахождение дроби от числа"

"Умножение дробей, нахождение дроби от числа"

. Выполнить умножение: 3 8 ∙2=. Выполнить умножение: 3 7 ∙ 2 9 =. 2 21. Выполнить умножение: 5∙1 7 15 =. 7 1 3. Вычислить площадь квадрата со стороной ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Аксиомы стереометрии и их следствия

Аксиомы стереометрии и их следствия

Цели:. Изучить аксиомы стереометрии: - о взаимном расположении точек, - о взаимном расположении прямых, - о взаимном расположении плоскостей в пространстве. ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметические действия с положительными и отрицательными числами

Арифметические действия с положительными и отрицательными числами

. Муниципальное бюджетное общеобразовательное учреждение«Лицей №2». Методическая разработка урокаматематики. «Арифметические действия ...
Алгоритм письменного деления многозначного числа на двузначное, трёхзначное число

Алгоритм письменного деления многозначного числа на двузначное, трёхзначное число

Открытый урок математики 4 класс. Тема: Алгоритм письменного деления многозначного числа на двузначное, трёхзначное число. Цель:. формирование ...
Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов. . КАЗАХСТАН. ЮЖНО-КАЗАХСТАНСКАЯ ОБЛАСТЬ. Г.ШЫМКЕНТ, ОСНОВНАЯ СРЕДНЯЯ ШКОЛА №97. ...
Алгебра событий и основные правила вычисления вероятностей

Алгебра событий и основные правила вычисления вероятностей

Закономерности окружающего мира – 7 класс. Тема 9. Алгебра событий и основные правила вычисления вероятностей. урок на тему. Правило сложения ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Конспект урока математики в 10 классе. Жирнова С.В. учитель математики. Тема урока:. «Арифметический квадратный корень и его свойства». Тип урока. ...
Веселая и полезная математика

Веселая и полезная математика

. Тюрина Валентина Викторовна. 1 квалификационная категория – учитель математики. Город Прокопьевск Кемеровская область. МКОУ «Школа – интернат ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Вероятность и математическая статистика

Вероятность и математическая статистика

Открытый урок. . по учебной дисциплине Теория вероятностей и математическая статистика. Тема: «Вероятность и математическая статистика». Группа ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 июня 2019
Категория:Математика
Содержит:12 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации