- Квадратные уравнения

Презентация "Квадратные уравнения" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43

Презентацию на тему "Квадратные уравнения" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 43 слайд(ов).

Слайды презентации

Квадратные уравнения
Слайд 1

Квадратные уравнения

Содержание. Введение. Основная часть. Заключение. Список используемой литературы.
Слайд 2

Содержание.

Введение. Основная часть. Заключение. Список используемой литературы.

Введение. Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы не
Слайд 3

Введение.

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами. Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Умение быстро, рационально и правильно решать квадратные уравнения облегчает прохождение многих тем курса математики:в разложении квадратного трехчлена, в исследовании квадратичной функции, в решении уравнений высших степеней, в решении текстовых задач и задач по геометрии. Содержание

Основная часть. Из истории. Определение. Виды квадратных уравнений. Практикум. содержание
Слайд 4

Основная часть.

Из истории. Определение. Виды квадратных уравнений. Практикум. содержание

Из истории. Квадратные уравнения в Древнем Вавилоне. Квадратные уравнения в Индии. Квадратные уравнения в Европе 13-17в.в. Основная часть
Слайд 5

Из истории.

Квадратные уравнения в Древнем Вавилоне. Квадратные уравнения в Индии. Квадратные уравнения в Европе 13-17в.в. Основная часть

Кв. уравнения в Древнем Вавилоне из истории. Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и с
Слайд 6

Кв. уравнения в Древнем Вавилоне из истории

Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей веры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения: Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Кв. уравнения в Индии из истории. Задачи на квадратные уравнения встречаются уже в 499 г. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: "Как солнце блеском своим затмевает
Слайд 7

Кв. уравнения в Индии из истории

Задачи на квадратные уравнения встречаются уже в 499 г. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: "Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи. Задача знаменитого индийского математика Бхаскары: Обезьянок резвых стая Всласть поевши, развлекаясь. Их в квадрате часть восьмая На поляне забавлялась. А 12 по лианам..... Стали прыгать, повисая. Сколько было обезьянок, Ты скажи мне, в этой стае?

Квадратные уравнения в Европе 13-17 в.в. из истории. Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. итальянским математиком Леонардом Фибоначчи. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0, было сформулировано в Европе
Слайд 8

Квадратные уравнения в Европе 13-17 в.в. из истории

Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. итальянским математиком Леонардом Фибоначчи. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0, было сформулировано в Европе лишь в 1544 г. Штифелем. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Определение основная часть. Уравнение вида ax2+bx+c=0, где a, b, c - действительные числа, причем a не равно 0, называют квадратным уравнением. Если a = 1 , то квадратное уравнение называют приведенным; если a ¹ 1, то неприведенным . Числа a, b, c носят следующие названия:a -первый коэффициент, b -
Слайд 9

Определение основная часть

Уравнение вида ax2+bx+c=0, где a, b, c - действительные числа, причем a не равно 0, называют квадратным уравнением. Если a = 1 , то квадратное уравнение называют приведенным; если a ¹ 1, то неприведенным . Числа a, b, c носят следующие названия:a -первый коэффициент, b - второй коэффициент, c - свободный член. Корни уравнения ax2+bx+c=0 находят по формуле Выражение D = b2- 4ac называют дискриминантом квадратного уравнения. Если D 0, то уравнение имеет два действительных корня. В случае, когда D = 0, иногда говорят, что квадратное уравнение имеет два одинаковых корня. Используя обозначение D = b2- 4ac, можно переписать формулу в виде Если b = 2k, то формула принимает вид: Итак, где k = b / 2. Последняя формула особенно удобна в тех случаях, когда b / 2 - целое число, т.е. коэффициент, b - четное число.

Виды квадратных уравнений. Неполные кв. уравнения. Полное кв. уравнение. Теорема Виета. Теорема, обратная теореме Виета. Кв. уравнения с комплексными переменными. Решение кв. уравнений с помощью графиков. Разложение кв. трехчлена на множители. Биквадратные уравнения Уравнения с параметрами. Основная
Слайд 10

Виды квадратных уравнений.

Неполные кв. уравнения. Полное кв. уравнение. Теорема Виета. Теорема, обратная теореме Виета. Кв. уравнения с комплексными переменными. Решение кв. уравнений с помощью графиков. Разложение кв. трехчлена на множители. Биквадратные уравнения Уравнения с параметрами. Основная часть

Неполные кв. уравнения виды кв. уравнений. Если в квадратном уравнении ax2+bx+c=0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным. Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравн
Слайд 11

Неполные кв. уравнения виды кв. уравнений

Если в квадратном уравнении ax2+bx+c=0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным. Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения - проще решить уравнение методом разложения его левой части на множители. Способы решения неполных квадратных уравнений: 1) c = 0 , то уравнение примет вид ax2+bx=0. x( ax + b ) = 0 , x = 0 или ax + b = 0 , x = -b : a . 2) b = 0, то уравнение примет вид ax2 + c = 0 , x2 = -c : a , x1 = или x2 = - 3) b = 0 и c = 0 , то уравнение примет вид ax2 = 0, x =0.

Полное квадратное уравнение виды кв. уравнений. Если в квадратном уравнении второй коэффициент и свободный член не равны нулю, то такое уравнение называют полным квадратным уравнением.
Слайд 12

Полное квадратное уравнение виды кв. уравнений

Если в квадратном уравнении второй коэффициент и свободный член не равны нулю, то такое уравнение называют полным квадратным уравнением.

Теорема Виета виды кв. уравнений. Теорема. Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Доказательство. Рассмотрим приведённое квадратное уравнение. Обозначим второй коэффициент буквой p, а
Слайд 13

Теорема Виета виды кв. уравнений

Теорема. Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Доказательство. Рассмотрим приведённое квадратное уравнение. Обозначим второй коэффициент буквой p, а свободный член - буквой q: Дискриминант этого уравнения D равен Пусть D>0 .Тогда это уравнение имеет два корня: и Найдём сумму и произведение корней:

Теорема, обратная теореме Виета. виды кв. уравнений. Теорема. Если числа m и n таковы, что их сумма равна –p, а произведение равно q, то эти числа являются корнями уравнения Доказательство. По условию m+n=-p,а mn=q. Значит, уравнение можно записать в виде Подставив вместо x число m, получим: Значит,
Слайд 14

Теорема, обратная теореме Виета. виды кв. уравнений

Теорема. Если числа m и n таковы, что их сумма равна –p, а произведение равно q, то эти числа являются корнями уравнения Доказательство. По условию m+n=-p,а mn=q. Значит, уравнение можно записать в виде Подставив вместо x число m, получим: Значит, число m является корнем уравнения. Аналогично можно показать, что число n так же является корнем уравнения: По праву в стихах быть воспета О свойствах корней теорема Виета. Что лучше, скажи, постоянства такого: Умножишь ты корни и дробь уж готова: В числителе С, в знаменателе А, А сумма корней тоже дроби равна Хоть с минусом дробь эта, что за беда- В числителе b, в знаменателе a.

Кв. уравнения с комплексными переменными виды кв. уравнений. Сначала рассмотрим простейшее квадратное уравнение где a-заданное число, а z-неизвестное. На множестве действительных чисел это уравнение: 1)Имеет один корень z=0, если а=0; 2)Имеет два действительных корня , если а>0. 3)Не имеет действ
Слайд 15

Кв. уравнения с комплексными переменными виды кв. уравнений

Сначала рассмотрим простейшее квадратное уравнение где a-заданное число, а z-неизвестное. На множестве действительных чисел это уравнение: 1)Имеет один корень z=0, если а=0; 2)Имеет два действительных корня , если а>0. 3)Не имеет действительных корней, если a

Решение кв. уравнений с помощью графиков. виды кв. уравнений. Не используя формул квадратное уравнение можно решить графическим способом. Например Решим уравнение Для этого построим два графика(рис.1): 1)y=x2 2)y=x+1. 1)y=x2, квадратичная функция, график парабола. D(f): 2)y=x+1, линейная функция, гр
Слайд 16

Решение кв. уравнений с помощью графиков. виды кв. уравнений

Не используя формул квадратное уравнение можно решить графическим способом. Например Решим уравнение Для этого построим два графика(рис.1):

1)y=x2 2)y=x+1

1)y=x2, квадратичная функция, график парабола. D(f):

2)y=x+1, линейная функция, график прямая. D(f):

Рисунок 1 Ответ:

Абсциссы точек пересечения графиков и будет корнями уравнения. Если графики пересекаются в двух точках, то уравнение имеет два корня. Если графики пересекаются в одной точке, то уравнение имеет один корень. Если графики не пересекаются, то уравнение корней не имеет.

Разложение кв. трехчлена на множители виды кв. уравнений. Многочлен вида ax2+bx+c, где a,b,c - некоторые числа, x переменная, называется квадратным трёхчленом. Пример 3x2+7x+9 Квадратный трехчлен разлагается на множители , где и корни трехчлена. Дано: - квадратный трехчлен; и -корни его Доказать: До
Слайд 17

Разложение кв. трехчлена на множители виды кв. уравнений

Многочлен вида ax2+bx+c, где a,b,c - некоторые числа, x переменная, называется квадратным трёхчленом. Пример 3x2+7x+9 Квадратный трехчлен разлагается на множители , где и корни трехчлена. Дано: - квадратный трехчлен; и -корни его Доказать: Доказательство: по теореме Виета следует,

Биквадратные уравнения виды кв. уравнений. Решение квадратных уравнений широко применяется в других разделах математики: в разложении квадратного трехчлена, в исследовании квадратичной функции, в решении уравнений высших степеней, в решении текстовых задач и задач по геометрии. Некоторые уравнения в
Слайд 18

Биквадратные уравнения виды кв. уравнений

Решение квадратных уравнений широко применяется в других разделах математики: в разложении квадратного трехчлена, в исследовании квадратичной функции, в решении уравнений высших степеней, в решении текстовых задач и задач по геометрии. Некоторые уравнения высших степеней можно решить, сведя их к квадратному. 1) Иногда левую часть уравнения легко разложить на множители, из которых каждый - многочлен не выше 2-ой степени. Тогда приравнивая каждый многочлен к нулю, решаем полученные уравнения. ПРИМЕР: 2) Если уравнение имеет вид ax2n+bxn+c= 0, его можно свести к квадратному, введя новую переменную t = x. ПРИМЕР: 3) В геометрии: Гипотенуза прямоугольного треугольника равна 10. Найти катеты, если один из них на 2 см. больше другого. РЕШЕНИЕ: по теореме Пифагора a2+ b2= c2 Пусть х см.-1 катет, тогда (х+2) см.-2 катет. Составим уравнение: x2+ (x+2)2= 102 Пифагор

Уравнения с параметрами(1) виды кв. уравнений. Линейные и квадратные уравнения. Линейное уравнение, записанное в общем виде, можно рассматривать как уравнение с параметрами : ах = b, где х –неизвестное, а, b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при
Слайд 19

Уравнения с параметрами(1) виды кв. уравнений

Линейные и квадратные уравнения. Линейное уравнение, записанное в общем виде, можно рассматривать как уравнение с параметрами : ах = b, где х –неизвестное, а, b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном. При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него. Особым значением параметра а является значение а = 0. 1. Если а ≠ 0 , то при любой паре параметров а и b оно имеет единственное решение х = . 2. Если а = 0, то уравнение принимает вид: 0 х = b. В этом случае значение b = 0 является особым значением параметра b. При b ≠ 0 уравнение решений не имеет. При b = 0 уравнение примет вид : 0 х = 0. Решением данного уравнения является любое действительное число.

Уравнения с параметрами(2) виды кв. уравнений. Иногда в уравнениях некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами. Такие буквы называются параметрами. Предполагается, что эти параметры могут принимать любые числовые значения, т.е. одно уравнения с параметрами
Слайд 20

Уравнения с параметрами(2) виды кв. уравнений

Иногда в уравнениях некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами. Такие буквы называются параметрами. Предполагается, что эти параметры могут принимать любые числовые значения, т.е. одно уравнения с параметрами задаёт множество уравнений (для всех возможных значений параметров). Например, линейное уравнение ax + b = c с неизвестным x можно рассматривать как уравнение с параметрами a, b, и c. Его решением при a ¹ 0 является x = (c - b) / a. Если a = 0, то получается “уравнение” b = c, и если действительно b = c, то корнями данного уравнения являются все действительные числа. Если же b ¹ c, при этом a = 0, то данное уравнение корней не имеет. Так, с параметрами учащиеся встречаются при введении некоторых понятий. Не приводя подробных определений, рассмотрим случай в качестве примеров следующие объекты: · функция прямая пропорциональность: y = kx (x и y — переменные; k — параметр,k ¹ 0); · линейная функция: y = kx + b (x и у — переменные, k и b —параметры); · линейное уравнение: ax + b = 0 (x — переменная; a и b —параметры); · уравнение первой степени: ax + b = 0 (x — переменная; a и b — параметры, a ¹ 0); · квадратное уравнение: ax2 + bx + c = 0 (x — переменная; a, b и c — параметры, a ¹ 0). Решить уравнение с параметрами означает следующее: 1) исследовать, при каких значениях параметров уравнение имеет корни и сколько их при разных значениях параметров. 2) Найти все выражения для корней и указать для каждого из них те значения параметров, при которых это выражение действительно определяет корень уравнения. Ответ к задаче “решить уравнение с параметрами” должен выглядеть следующим образом: уравнение при таких-то значениях параметров имеет корни …, при таких-то значениях параметров — корни …, при остальных значениях параметров уравнение корней не имеет.

Практикум. Неполные кв. уравнения Метод выделения полного квадрата. Решение кв. уравнений по формуле b2-4ac Приведённые кв. уравнения. Теорема Виета Решение кв. уравнений по теореме обратной т. Виета Решение задач с помощью кв. уравнений. Решение кв. уравнений по формуле k2-ac. Решение уравнений с п
Слайд 21

Практикум.

Неполные кв. уравнения Метод выделения полного квадрата. Решение кв. уравнений по формуле b2-4ac Приведённые кв. уравнения. Теорема Виета Решение кв. уравнений по теореме обратной т. Виета Решение задач с помощью кв. уравнений. Решение кв. уравнений по формуле k2-ac. Решение уравнений с параметрами Проверь себя! Основная часть

Стр.1 Практикум назад. Неполные кв. уравнения Далее
Слайд 22

Стр.1 Практикум назад

Неполные кв. уравнения Далее

Стр.2 Практикум назад. Метод выделения полного квадрата. Далее
Слайд 23

Стр.2 Практикум назад

Метод выделения полного квадрата. Далее

Стр.3 Практикум назад. Решение кв. уравнений по формуле b2-4ac Далее
Слайд 24

Стр.3 Практикум назад

Решение кв. уравнений по формуле b2-4ac Далее

Стр.4 Практикум назад. Приведённые кв. уравнения. Теорема Виета Записать приведённое кв. уравнение, имеющее корни : 1) 2) 3) 4) Решение Воспользуемся т.Виета. Далее
Слайд 25

Стр.4 Практикум назад

Приведённые кв. уравнения. Теорема Виета Записать приведённое кв. уравнение, имеющее корни : 1) 2) 3) 4) Решение Воспользуемся т.Виета. Далее

Стр.5 Практикум назад. Решение кв. уравнений по теореме обратной т. Виета Далее. 1)Составьте уравнение, если. q= p=. 2)Составьте уравнение, если. 3)Составьте уравнение, если. 4)Составьте уравнение, если. 5)Составьте уравнение, если
Слайд 26

Стр.5 Практикум назад

Решение кв. уравнений по теореме обратной т. Виета Далее

1)Составьте уравнение, если

q= p=

2)Составьте уравнение, если

3)Составьте уравнение, если

4)Составьте уравнение, если

5)Составьте уравнение, если

Стр.6 Практикум назад. Расстояние между начальным и конечным пунктами следования поезда 600 км. На расстоянии 150км. от начального пункта поезд задержался на 1,5 часа. Для того, что бы поезд пришёл по расписанию, ему пришлось увеличить скорость на 15 км\ч. Найдите время нахождения поезда в пути. Реш
Слайд 27

Стр.6 Практикум назад

Расстояние между начальным и конечным пунктами следования поезда 600 км. На расстоянии 150км. от начального пункта поезд задержался на 1,5 часа. Для того, что бы поезд пришёл по расписанию, ему пришлось увеличить скорость на 15 км\ч. Найдите время нахождения поезда в пути. Решение задач с помощью кв. уравнений. Процессы Скорость км/ч Время ч. Расстояние км. Поезд до задержки x 150 Поезд после задержки x+15 450 По расписанию x 600 _____________________________________________________________________ Зная, что поезд был задержан на 1,5 часа, сост.ур ОДЗ Далее

Стр.7 Практикум назад. Катер прошёл вверх по реке 35 км. затем по протоке 18 км. против течения. На всё путешествие он затратил 8 часов. Найдите скорость течения реки, зная, что скорость катера в стоячей воде 10 км\ч, а скорость течения в протоке на 1 км\ч больше чем в реке. Решение задач с помощью
Слайд 28

Стр.7 Практикум назад

Катер прошёл вверх по реке 35 км. затем по протоке 18 км. против течения. На всё путешествие он затратил 8 часов. Найдите скорость течения реки, зная, что скорость катера в стоячей воде 10 км\ч, а скорость течения в протоке на 1 км\ч больше чем в реке. Решение задач с помощью кв. уравнений. Процессы Скорость км/ч Время ч. Расстояние км. Вверх по реке 10-x 35 Вверх по протоку 10-(x+1) 18 V течения x V притока x+1 _____________________________________________________________ Зная, что скорость в стоячей воде равна 10 км/ч, сост.ур ОДЗ Далее

Стр.8 Практикум назад. За 2 года население выросло с 20000 человек до 22050 человек. Найти ежегодный % прироста населения. Решение задач с помощью кв. уравнений. Было Изменилось Стало Первый год 20000 200x 20000+200x Второй год 20000+200x 200x+2x 20000+400x+2x _______________________________________
Слайд 29

Стр.8 Практикум назад

За 2 года население выросло с 20000 человек до 22050 человек. Найти ежегодный % прироста населения. Решение задач с помощью кв. уравнений. Было Изменилось Стало Первый год 20000 200x 20000+200x Второй год 20000+200x 200x+2x 20000+400x+2x _____________________________________________________________________ Зная, что за 2 года население около 22050, составим уравнение Ответ:5% Далее

Стр.9 Практикум назад. Решение кв. уравнений по формуле k2-ac. т.к. D1 Далее
Слайд 30

Стр.9 Практикум назад

Решение кв. уравнений по формуле k2-ac.

т.к. D1 Далее

Стр. 10 Практикум назад. Решение уравнений с параметрами П р и м е р . Решим уравнение 2а(а — 2) х = а — 2. Р е ш е н и е. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются а=0 и а=2. При этих значениях а невозможно деление обеих
Слайд 31

Стр. 10 Практикум назад

Решение уравнений с параметрами П р и м е р . Решим уравнение 2а(а — 2) х = а — 2. Р е ш е н и е. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются а=0 и а=2. При этих значениях а невозможно деление обеих частей уравнения на коэффициент при х. В то же время при значениях параметра а≠0, а≠2 это деление возможно. Таким образом, целесообразно множество всех действительных значений параметра разбить на подмножества A1={0}, А2={2} и Аз = {а≠0, а≠2} и решить уравнение (2) на каждом из этих подмножеств, т. е. решить уравнение как семейство уравнений, получающихся из него при следующих значениях параметра: 1) а=0 ; 2) а=2 ; 3) а≠0, а≠2 Рассмотрим эти случаи. 1) При а=0 уравнение принимает вид 0 х = — 2. Это уравнение не имеет корней. 2) При а=2 уравнение принимает вид 0 х=0. Корнем этого уравнения является любое действительное число. 3) При а≠0, а≠2 из уравнения получаем, х = откуда х = . 0 т в е т: 1) если а=0, то корней нет; 2) если а=2, то х — любое действительное число; 3) если а≠0, а≠2 , то х = Далее

Стр. 11 Практикум назад. Пример 1. Решите уравнение Решение Найдем недопустимые значения a: Ответ. Если если a = – 19, то корней нет. Пример 2. Решите уравнение Решение Найдем недопустимые значения параметра a: 10 – a = 5, a = 5; 10 – a = a, a = 5. Ответ. Если a = 5, то уравнение теряет смысл; если
Слайд 32

Стр. 11 Практикум назад

Пример 1. Решите уравнение Решение Найдем недопустимые значения a: Ответ. Если если a = – 19, то корней нет.

Пример 2. Решите уравнение Решение Найдем недопустимые значения параметра a: 10 – a = 5, a = 5; 10 – a = a, a = 5. Ответ. Если a = 5, то уравнение теряет смысл; если a¹5, то x=10–a.

Тест назад. ТЕСТ (англ. test проба, испытание, исследование), 1) В психологии и педагогике стандартизированного задания, по результатам выполнения которых судят о психофизиологических и личностных характеристиках, а также знаниях, умении и навыках испытуемого. 2) В физиологии и медицине пробные возд
Слайд 33

Тест назад

ТЕСТ (англ. test проба, испытание, исследование), 1) В психологии и педагогике стандартизированного задания, по результатам выполнения которых судят о психофизиологических и личностных характеристиках, а также знаниях, умении и навыках испытуемого. 2) В физиологии и медицине пробные воздействия на организм с целью изучения различных физиологических процессов в нем, а также для определения функционального состояния отдельных органов, тканей и организма в целом. 3) В вычислительной технике контрольная задача для проверки правильности работы ЭВМ. 4) В распознавании образов множество функционально взаимозависимых признаков, характеризующих образ (класс). Тесты – это реальная возможность проверить свои накопленные знания. Попробуй, проверь себя! Вперёд! Удачи!

Перейти к тесту

Неполные квадратные уравнения назад. Задание №1. Самостоятельно решите уравнения : 1) 3x2 + 4x = 0, 2) 2x2- 2 =0, 3) 5x2 =0, 4) 3х2 – 2х = 0, 5) 2х2 – 7 = 0, 6) -x2 + 9 = 0.
Слайд 34

Неполные квадратные уравнения назад

Задание №1. Самостоятельно решите уравнения : 1) 3x2 + 4x = 0, 2) 2x2- 2 =0, 3) 5x2 =0, 4) 3х2 – 2х = 0, 5) 2х2 – 7 = 0, 6) -x2 + 9 = 0.

Решение квадратных уравнений по формуле b2 - 4ac назад. Задание №3: сократите дробь a2 – 25 ————— = 10 + 3a – a2 Варианты ответов а) a + 5 б) a + 5 в) a - 5 ——— - ——— ——— . a + 2 a + 2 a - 2
Слайд 35

Решение квадратных уравнений по формуле b2 - 4ac назад

Задание №3: сократите дробь a2 – 25 ————— = 10 + 3a – a2 Варианты ответов а) a + 5 б) a + 5 в) a - 5 ——— - ——— ——— . a + 2 a + 2 a - 2

Решение задач с помощью квадратных уравнений назад. Задание №4 Решите задачу. а) Два пешехода одновременно выходят навстречу друг другу из пунктов A и B и встречаются через полчаса. Продолжая движение, первый прибывает в B на 1 мин раньше, чем второй в пункт A. За какое время преодолел расстояние ка
Слайд 36

Решение задач с помощью квадратных уравнений назад

Задание №4 Решите задачу. а) Два пешехода одновременно выходят навстречу друг другу из пунктов A и B и встречаются через полчаса. Продолжая движение, первый прибывает в B на 1 мин раньше, чем второй в пункт A. За какое время преодолел расстояние каждый пешеход? б) Сплав золота с серебром, содержащий 80 г золота, сплавлен со 100 г чистого золота. В результате содержание золота в сплаве повысилось по сравнению с первоначальным на 20%. Сколько серебра в сплаве?

Решение уравнений с параметрами назад. Задание №5 Решите уравнения: 1. x – a = 0; 2. x + a = 1; 3. 2x = a 4. x + y= 2; 5. ах = 3
Слайд 37

Решение уравнений с параметрами назад

Задание №5 Решите уравнения: 1. x – a = 0; 2. x + a = 1; 3. 2x = a 4. x + y= 2; 5. ах = 3

Квадратичная функция и её график. Задание №6 Постройте график функции 1)y=x2-6x+8 2)y=-(x+4)2-9 3)y=0.5x2-7 4)y=2(x+4)2 5)y=2(x-5)2+3 6)y=(x-5)2 7)y=-0.4x2-3 8)y=-x2-8x-14. Перейти к ответам
Слайд 38

Квадратичная функция и её график.

Задание №6 Постройте график функции 1)y=x2-6x+8 2)y=-(x+4)2-9 3)y=0.5x2-7 4)y=2(x+4)2 5)y=2(x-5)2+3 6)y=(x-5)2 7)y=-0.4x2-3 8)y=-x2-8x-14

Перейти к ответам

Ответы. Задание №1. 1)x1=0, x2≈-1,3; 2)x1,2=±1; 3)x=0; 4)х1=0, х2≈0,7; 5) х1,2 =± √ ; 6) x1,2=±3. Задание №2. 1) нет; 2) нет; 3) нет. Задание №3. в) Задание №4. а) 55 мин, 66 мин; б) 120г. Задание №5. 1) x=a; 2) если a=1, то x=0, а если a≠1, то x=1-a; 3) если a=0, то x=0,а если a≠0, то x= ; 4) если
Слайд 39

Ответы

Задание №1. 1)x1=0, x2≈-1,3; 2)x1,2=±1; 3)x=0; 4)х1=0, х2≈0,7; 5) х1,2 =± √ ; 6) x1,2=±3. Задание №2. 1) нет; 2) нет; 3) нет. Задание №3. в) Задание №4. а) 55 мин, 66 мин; б) 120г. Задание №5. 1) x=a; 2) если a=1, то x=0, а если a≠1, то x=1-a; 3) если a=0, то x=0,а если a≠0, то x= ; 4) если y=2, то x=0, а если y≠2, то x=2-y; 5) если a=0, то нет решений, а если a≠0, то x= .

Задание №6 1) 2) 3) 4)
Слайд 40

Задание №6 1) 2) 3) 4)

Ответы назад 5) 6) 7) 8)
Слайд 41

Ответы назад 5) 6) 7) 8)

Заключение содержание. Вопросы о том, как складывались первичные математические представления о квадратных уравнениях, какой вид они принимали, как проходили первые этапы их совершенствования, никогда не теряли своей актуальности и не потеряют ее в будущем. В том, чтобы правильно освещать эти вопрос
Слайд 42

Заключение содержание

Вопросы о том, как складывались первичные математические представления о квадратных уравнениях, какой вид они принимали, как проходили первые этапы их совершенствования, никогда не теряли своей актуальности и не потеряют ее в будущем. В том, чтобы правильно освещать эти вопросы, заинтересованы весьма широкие слои человеческого общества: и те, кто начинает свое математическое образование; и те, кто учит детей математике, так как это способствует отысканию и использованию наиболее эффективных методических приемов. Предложенная презентация содержит основные понятия, формулы, теоремы, связанные с курсом изучения квадратных уравнений. Для закрепления теоретической части предложен практикум, где рассмотрены примеры уравнений с решением. В заключительной части предложены тесты для самостоятельного закрепления материала.

Список используемой литературы. Алгебра. Дополнительные главы к школьному учебнику 8 класс. Ю. Н. Макарычев, Н. Г. Миндюк. Москва. «Просвещение» 2003 год. В данном учебном пособии излагается материал, который соответствует программе углубленного изучения математики и выходит за рамки действующих уче
Слайд 43

Список используемой литературы.

Алгебра. Дополнительные главы к школьному учебнику 8 класс. Ю. Н. Макарычев, Н. Г. Миндюк. Москва. «Просвещение» 2003 год. В данном учебном пособии излагается материал, который соответствует программе углубленного изучения математики и выходит за рамки действующих учебников алгебры 8 класса. Этот материал состоится по принципу модульного дополнения действующих учебников и естественным образом примыкает к курсу, углубляет и расширяет его. Алгебра. Сборник заданий для проведения письменного экзамена по алгебре за курс основной школы 9 класс. Москва. «Дрофа» 2002 год. Подбор материала по всему разделу курса алгебры. Алгебра. Сборник задач по алгебре для поступающих в вузы. Книга 1. М. И. Сканави. Москва. «ОНИКС 21 век • Мир и образование» 2002 год. Задачи объединены по принципу однородности тем, типов, методов решения и разбиты на три группы по уровню их сложности. Ко многим задачам даны подробные решения. Большая российская энциклопедия. Школьная энциклопедия – математика. С. М. Никольский. Москва. «Дрофа» 1997 год. «Математика» - первая из серии школьных энциклопедий, состоит из 2-х частей: основной и дополнительной, каждая составлена из нескольких разделов, где статьи расположены в алфавитном порядке. В книге имеется биографический указатель. Сборник задач по алгебре 8-9 класс. М. Л. Галицкий, А. М. Гольдман, Л. И. Звавич. Москва. «Просвещение» 2002 год. В данном пособии содержаться задачи, способствующие систематическому углублению изучаемого материала и развитию навыков решения сложных задач, а также подготовке к экзаменам. Интернет.

Список похожих презентаций

Квадратные уравнения

Квадратные уравнения

Автор: Бесфамильная Анна ученица 8-а класса Руководитель: Никифорова М.Н., учитель математики ГОУ СОШ №1968 Москва 2010г. Цели проекта:. Дать определение ...
Квадратные уравнения

Квадратные уравнения

Теоретический материал. Устные упражнения. Самостоятельная работа. Из истории квадратных уравнений. Задачи. Квадратным уравнением называется уравнение ...
Квадратные уравнения

Квадратные уравнения

Цели: 1.Систематизация знаний по теме «Квадратные уравнения»; 2.Развитие интереса к предмету. Задачи: 1.Знать определение квадратного уравнения, типы, ...
Квадратные уравнения

Квадратные уравнения

Цели урока. Образовательные цели урока: Обеспечить закрепление теоремы Виета; Обратить внимание учащихся на решение квадратных уравнений, в которых ...
Квадратные корни. Квадратные уравнения

Квадратные корни. Квадратные уравнения

Краткие рекомендации для учащихся. На слайде «Мешочек счастья» для вас подобраны задания. Нажимаете на номер 1 и увидите соответствующее задание с ...
Квадратные уравнения

Квадратные уравнения

Тема урока:. Решение квадратных уравнений. Цели урока: Научить учеников решать квадратные уравнения. Научить учеников изпользовать более легкий способ ...
Квадратные уравнения

Квадратные уравнения

Квадратное уравнение имеет действительные положительные корни, если. Квадратное уравнение имеет действительные отрицательные корни, если. Квадратное ...
Квадратные уравнения

Квадратные уравнения

Цели и задачи. Цель урока: Рассмотреть разные типы задач, приводящих к решению квадратных уравнений. Задачи: 1) Обобщить знания и умения по данной ...
Квадратные уравнения урок

Квадратные уравнения урок

Цели урока: систематизировать и обобщить знания учащихся по теме «Решение квадратных уравнений»; развивать логическое мышление; повышать интерес к ...
Квадратные уравнения и уравнения, приводимые к квадратным

Квадратные уравнения и уравнения, приводимые к квадратным

Расписание. 1. Алгебра 2. История 3. География 4. Рисование. Алгебра. Выбрать лишнее уравнение:. 1. 3х2−х-7 = 0, 2. х2 − 89 = 0, 3. 4х2 + х −3 = 0, ...
Квадратные уравнения: обобщение

Квадратные уравнения: обобщение

«Дороги не те знания, Которые откладываются в мозгу, как жир, Дороги те, которые Превращаются в Умственные мышцы» Герберт Спенсер. ФОРМУЛЫ 1. 2. 4. ...
Квадратные уравнения. Основные свойства

Квадратные уравнения. Основные свойства

Из данных уравнений выбрать квадратные. А) х2 – 1 = 0; Б) х3 + 2х – 1 = 0; В) - 1 = 0;. Г) 3х = 0; Д) 2х2 – 5х + 6 = 0; Е) 7х – х2 + 3 = 0. ах2 + ...
Квадратный трехчлен. Квадратичная функция. Квадратные уравнения. Разложение квадратного трехчлена на множители

Квадратный трехчлен. Квадратичная функция. Квадратные уравнения. Разложение квадратного трехчлена на множители

Разработано учителем математики МОУ «СОШ» п. Аджером Корткеросского района Республики Коми Мишариной Альбиной Геннадьевной. Содержание. Квадратный ...
Квадратные уравнения

Квадратные уравнения

10 30 15. Назовите индийскую игру от которой берет свое начало современный спортивный бадминтон. В нее играли в Древней Греции, Китае, Индии и Японии. ...
Квадратные уравнения

Квадратные уравнения

Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением ...
Квадратные уравнения

Квадратные уравнения

Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением ...
Квадратные уравнения

Квадратные уравнения

Содержание. Определение квадратного уравнения;. Решение неполных квадратных уравнений;. Решение уравнений, сводящихся к неполным квадратным уравнениям;. ...
Квадратные уравнения

Квадратные уравнения

Теоретические вопросы:. 1.Сформулируйте определение квадратного уравнения. 2. Как называется уравнение вида. 3. Какое квадратное уравнение называется ...
Урок-смотр знаний по теме "Квадратные уравнения"

Урок-смотр знаний по теме "Квадратные уравнения"

Организационный момент. Раз. Два, три, четыре, пять Начинаем мы считать… Бегать, прыгать мы не будем Будем весь урок решать. Критерий оценки этапов ...
Удивительные квадратные уравнения

Удивительные квадратные уравнения

Решите уравнения. Решите уравнение. Если. Решение. Решение. 1-2+1=0 х1 =1, х2 =1 Ответ. х=1. № 645(а) При каких значениях параметра t имеет единственный ...

Конспекты

Квадратные уравнения

Квадратные уравнения

Некрасова Наталья Михайловна. . Урок – смотр знаний в 8 классе. . Тема урока: Квадратные уравнения. Цель урока:. 1. Проверить уровень усвоения ...
Квадратные уравнения

Квадратные уравнения

Конспект урока на тему «Квадратные уравнения». Цели урока:. обобщить и систематизировать знания учащихся по изученной теме; осуществить проверку ...
Квадратные уравнения

Квадратные уравнения

Урок тренинг «Квадратные уравнения». . Цели урока:. Образовательные - систематизировать знания, выработать умение выбирать рациональный способ ...
План урока по теме: Квадратные уравнения

План урока по теме: Квадратные уравнения

План урока по теме : Квадратные уравнения (8 класс). Автор Шаповалова Светлана Эдуардовна. Учитель МБОУ СОШ № 50 им.С.В.Марзоева г.Владикавказ. ...
Квадратные уравнения

Квадратные уравнения

Шамарина Вера Валентиновна,. МБОУ «Цнинская СОШ № 1» п. Строитель Тамбовского района Тамбовской области,. учитель математики. ...
Квадратные уравнения

Квадратные уравнения

. МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №2 СТ. АРХОНСКАЯ. . Урок алгебры в 8 классе ...
Квадратные уравнения

Квадратные уравнения

Урасова Наталья Николаевна. МКОУ Крутовская ООШ. Серафимовичского района. Волгоградской области. Учитель математики. Обобщающий урок по алгебре ...
Квадратные уравнения

Квадратные уравнения

Муниципальное общеобразовательное учреждение Кесовогорская средняя общеобразовательная школа. Тема урока: «Квадратные уравнения». Составила:. ...
Квадратные уравнения

Квадратные уравнения

. Составила:. Башкатова Лариса Васильевна,. Учитель математики МБОУ СОШ № 10. Ст. Новопокровская 2014 год. Цели ...
Квадратные уравнения

Квадратные уравнения

Урок – обобщение по теме «Квадратные уравнения». Конева Надежда Александровна, учитель математики ВКК. . МБОУ Борисоглебского городского округа. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:24 февраля 2019
Категория:Математика
Содержит:43 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации