- Действительные числа

Презентация "Действительные числа" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17

Презентацию на тему "Действительные числа" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 17 слайд(ов).

Слайды презентации

Презентация по теме: «Действительные числа». Выполнила: учитель математики ГОУ СОШ № 457 Ж.Ю. Магаз Санкт-Петербург 2010
Слайд 1

Презентация по теме: «Действительные числа».

Выполнила: учитель математики ГОУ СОШ № 457 Ж.Ю. Магаз Санкт-Петербург 2010

Числовые множества.
Слайд 2

Числовые множества.

Множество натуральных чисел. Натуральные числа - это числа счета. N={1,2,…n,…}. Заметим, что множество натуральных чисел замкнуто относительно сложения и умножения, т.е. сложение и умножение выполняются всегда, а вычитание и деление в общем случае не выполняются
Слайд 3

Множество натуральных чисел.

Натуральные числа - это числа счета. N={1,2,…n,…}. Заметим, что множество натуральных чисел замкнуто относительно сложения и умножения, т.е. сложение и умножение выполняются всегда, а вычитание и деление в общем случае не выполняются

Множество целых чисел. Введем в рассмотрение новые числа: 1) число 0 (ноль), 2) число (-n), противоположное натуральному n. При этом полагаем: n+(-n)=(-n)+n=0, -(-n)=n. Тогда множество целых чисел можно записать так: Z ={…,-n,…-2,-1,0,1,2,…,n,…}. Заметим также, что: Это множество замкнуто относитель
Слайд 4

Множество целых чисел.

Введем в рассмотрение новые числа: 1) число 0 (ноль), 2) число (-n), противоположное натуральному n. При этом полагаем: n+(-n)=(-n)+n=0, -(-n)=n. Тогда множество целых чисел можно записать так: Z ={…,-n,…-2,-1,0,1,2,…,n,…}. Заметим также, что: Это множество замкнуто относительно сложения, вычитания и умножения, т.е. Из множества целых чисел выделим два подмножества: 1) множество четных чисел 2) множество несетных чисел

Деление с остатком. В общем случае действие деления в множестве целых чисел не выполняется, но известно, что деление с остатком можно выполнить всегда, кроме деления на 0. Определение деления с остатком. Говорят, что целое число m делится на целое число n с остатком, если найдутся два числа q и p, т
Слайд 5

Деление с остатком.

В общем случае действие деления в множестве целых чисел не выполняется, но известно, что деление с остатком можно выполнить всегда, кроме деления на 0. Определение деления с остатком. Говорят, что целое число m делится на целое число n с остатком, если найдутся два числа q и p, такие что: (*) Хорошо известен алгоритм деления с остатком. Замечание: если r=0, то будем говорить, что m делится нацело на n.

m=nq+r, где 0≤ r

ПРИМЕРЫ: Разделить с остатком m на n. 1). m=190, n=3 190 3 18 6 3 10 9 1 q=63, r=1, 1q=2, r=3 (3. 3). m=-15, n=4 По формуле (*): -15=4q+r => q=-4, r=1 -15=4*(-4)+1 4). M=6, n=13 По формуле(*): 6=13q+r =>q=0, r=6 6=13*0+6
Слайд 6

ПРИМЕРЫ:

Разделить с остатком m на n. 1). m=190, n=3 190 3 18 6 3 10 9 1 q=63, r=1, 1q=2, r=3 (3

3). m=-15, n=4 По формуле (*): -15=4q+r => q=-4, r=1 -15=4*(-4)+1 4). M=6, n=13 По формуле(*): 6=13q+r =>q=0, r=6 6=13*0+6

Множество рациональных чисел. Множество рациональных чисел можно представить в виде: В частности, Таким образом, Множество рациональных чисел замкнуто относительно сложения, вычитания, умножения и деления (кроме случая деления на 0).
Слайд 7

Множество рациональных чисел.

Множество рациональных чисел можно представить в виде: В частности, Таким образом, Множество рациональных чисел замкнуто относительно сложения, вычитания, умножения и деления (кроме случая деления на 0).

Но в множестве рациональных чисел нельзя, например, измерить гипотенузу прямоугольного треугольника с катетам . По теореме Пифагора гипотенуза будет равна .Но число не будет рациональным, так как ни для каких m и n. Нельзя решить уравнение . Нельзя измерить длину окружности и т.д. Заметим, что всяко
Слайд 8

Но в множестве рациональных чисел нельзя, например, измерить гипотенузу прямоугольного треугольника с катетам . По теореме Пифагора гипотенуза будет равна .Но число не будет рациональным, так как ни для каких m и n. Нельзя решить уравнение . Нельзя измерить длину окружности и т.д. Заметим, что всякое рациональное число можно представить в виде конечной или бесконечной периодической десятичной дроби.

Множество иррациональных чисел. Числа, которые представляются бесконечной непериодической дробью, будем называть иррациональными. Множество иррациональных чисел обозначим Для иррациональных чисел нет единой формы обозначения. Отметим два иррациональных числа, которые обозначаются буквами – это числа
Слайд 9

Множество иррациональных чисел.

Числа, которые представляются бесконечной непериодической дробью, будем называть иррациональными. Множество иррациональных чисел обозначим Для иррациональных чисел нет единой формы обозначения. Отметим два иррациональных числа, которые обозначаются буквами – это числа и е.

Число «пи». Отношение длины окружности к диаметру есть величина постоянная, равная числу. d
Слайд 10

Число «пи»

Отношение длины окружности к диаметру есть величина постоянная, равная числу

d

Число е. Если рассмотреть числовую последовательность: с общим членом последовательности то с ростом п значения будут возрастать, но никогда не будет больше 3. Это означает, что последовательность ограничена. Такая последовательность имеет предел, который равен числу е.
Слайд 11

Число е.

Если рассмотреть числовую последовательность: с общим членом последовательности то с ростом п значения будут возрастать, но никогда не будет больше 3. Это означает, что последовательность ограничена. Такая последовательность имеет предел, который равен числу е.

Известно, что мощность иррациональных чисел больше мощности рациональных, т.е. Иррациональных чисел «больше», чем рациональных. Кроме того, как бы ни были близки два рациональных числа, между ними всегда есть иррациональное, т.е. Примеры иррациональных чисел: (золотое сечение) и т.д.
Слайд 12

Известно, что мощность иррациональных чисел больше мощности рациональных, т.е. Иррациональных чисел «больше», чем рациональных. Кроме того, как бы ни были близки два рациональных числа, между ними всегда есть иррациональное, т.е. Примеры иррациональных чисел: (золотое сечение) и т.д.

Множество вещественных (действительных) чисел. Множество вещественных чисел – это объединение множества рациональных чисел. Вывод: (см. рис. 1)
Слайд 13

Множество вещественных (действительных) чисел.

Множество вещественных чисел – это объединение множества рациональных чисел. Вывод: (см. рис. 1)

Определение модуля вещественного числа. 1) Пусть на числовой оси точка А имеет координату а. Расстояние от точки начала отсчета О до точки А называется модулем вещественного числа а и обозначается |a|. 2) Раскрытие модуля происходит по правилу: |a| = |OA|
Слайд 14

Определение модуля вещественного числа

1) Пусть на числовой оси точка А имеет координату а. Расстояние от точки начала отсчета О до точки А называется модулем вещественного числа а и обозначается |a|. 2) Раскрытие модуля происходит по правилу:

|a| = |OA|

Например: Замечание. Определение модуля можно расширить: Пример. Раскрыть знак модуля.
Слайд 15

Например: Замечание. Определение модуля можно расширить: Пример. Раскрыть знак модуля.

Основные свойства модуля. 1) 2) 3) 4) 5) 6)
Слайд 16

Основные свойства модуля

1) 2) 3) 4) 5) 6)

Решение примеров с использованием свойств модуля. Пример 1. Вычислить Пример 2. Раскрыть знак модуля Пример 3. Вычислить 1) 2) 3)
Слайд 17

Решение примеров с использованием свойств модуля

Пример 1. Вычислить Пример 2. Раскрыть знак модуля Пример 3. Вычислить 1) 2) 3)

Список похожих презентаций

Действительные числа и их свойства

Действительные числа и их свойства

Действительные числа образуют совокупность элементов, обладающую следующими свойствами. Если a и b - действительные числа (алгебраические, рациональные, ...
Действительные числа и преобразования алгебраических выражений

Действительные числа и преобразования алгебраических выражений

Действительные числа и преобразования алгебраических выражений. Цель урока:. Повторяем Различаем Развиваем Оцениваем. Дома: теория (10) (3). Натуральные ...
Действительные числа

Действительные числа

иметь понятия об: иррациональных числах; множестве действительных чисел; модуле действительного числа; уметь выполнять : вычисления с иррациональными ...
Действительные числа (2)

Действительные числа (2)

Содержание темы:. Действительные числа. Бесконечно убывающая геометрическая прогрессия. *Арифметический корень натуральной степени. *Тождественные ...
Действительные числа

Действительные числа

Этапы развития понятия числа. Геометрическое представление о числах как отрезках приводит к расширению множества Q до множества вещественных (или ...
Действительные числа

Действительные числа

На первых этапах существования человеческого общества числа, открытые в процессе практической деятельности, служили для примитивного счета предметов, ...
Положительные и отрицательные числа

Положительные и отрицательные числа

Устный счёт. 1. Выберите из данных чисел а) положительные числа; б) отрицательные числа. 13; -5; -56; 0; 56; 101; -2,1; -0,01; -12; 4; 3,7 Каким числом ...
Взаимно обратные числа

Взаимно обратные числа

Цель урока:. дать определение взаимно обратных чисел. научить находить число, обратное данному. развивать логическое мышление. Развитие логического ...
Нахождение числа по его дроби

Нахождение числа по его дроби

Мы часто находим часть от числа или наоборот, вычисляем число по его части:. Например: Сколько будет 1/2 от 5 км? Понятно, что полпути – это 2,5 км. ...
Отрицательные числа

Отрицательные числа

Термометр и температура. -100С. Упражнения. № 1 Назовите отрицательную температуру. -2С, -4С, 9С, 11С, -121 С, -130С, 29С,. №2. Перепишите ...
Натуральные числа в жизни людей

Натуральные числа в жизни людей

НАТУРАЛЬНЫЕ ЧИСЛА. С НАТУРАЛЬНЫМИ ЧИСЛАМИ Я ПОЗНАКОМИЛСЯ ЕЩЕ В РАННЕМ ДЕТСТВЕ. МАМА НАРИСОВАЛА ИХ НА ВАТМАНЕ И ПРИКРЕПИЛА К СТЕНЕ. ЦИФРЫ НА ПЛАКАТЕ ...
Нахождение дроби от числа и числа по его дроби

Нахождение дроби от числа и числа по его дроби

I.Прочитай задачи, запиши краткое условие, реши задачи. II.Cоставь свою стратегию решения задач. 1.Масса вяленой рыбы составляет 55% массы свежей ...
Вычисления значения числа Пи

Вычисления значения числа Пи

Число π – это хаос. Периферия – окружность. Известно много формул с числом π:. Франсуа Виет: Формула Валлиса:. Выражение через полилогарифм:. И многие ...
Возведение в степень. Куб и квадрат числа

Возведение в степень. Куб и квадрат числа

Устно. Упростить выражение: 25х + 15 х; 12у – 3у; 9k + 9k – 4k; 80c-35c-14c; 8d+d-9d; 163 + 37v + 18v. Решить уравнение: 7х+2х = 918; 5а-3а = 222; ...
Возведение комплексного числа в степень

Возведение комплексного числа в степень

? ? = (? cos ? +? sin ? ) ? = ? ? cos ??+? sin ?? , ? ? ? При возведении конкретного числа Z в квадрат произошло удвоение его аргумента, при возведении ...
Взаимно простые числа

Взаимно простые числа

В СТРАНЕ СМЕШАРИКОВ. оглавление. ЦЕЛИ И ЗАДАЧИ ПЛАН УРОКА ИТОГИ ДОМАШНЕЕ ЗАДАНИЕ ТЕМА УРОКА ОБОРУДОВАНИЕ. тема урока. взаимно простые числа. план ...
Взаимно обратные числа

Взаимно обратные числа

Дать определение взаимно обратных чисел; Научить находить числа, обратные данным, представленных в виде смешанных чисел, десятичных дробей. Цели и ...
Комплексные числа и квадратные уравнения

Комплексные числа и квадратные уравнения

Из курса алгебры основной школы вам известно, что квадрат- ное уравнение ах2 + bх + с = 0, а≠О, с действительными коэффициентами a, b, с имеет два ...

Конспекты

Иррациональные числа. Действительные числа

Иррациональные числа. Действительные числа

Урок математики в 8 классе. Тема урока:. Иррациональные числа. Действительные числа. Синиченкова Галина Алексеевна. ...
Действительные числа

Действительные числа

МОБУ « Комаровская СОШ им. В.М.Устиченко». Конспект урока по алгебре. в 8 классе. Тема урока:. Действительные числа. Максакова ...
Закрепление умений решать примеры и задачи на увеличение и уменьшение числа в несколько раз

Закрепление умений решать примеры и задачи на увеличение и уменьшение числа в несколько раз

Урок математики. во 2 классе «Полёт к звёздам». Тема урока:. . Закрепление умений решать примеры и задачи на увеличение и уменьшение числа в ...
Задачи на увеличение и уменьшение данного числа на несколько единиц. Закрепление

Задачи на увеличение и уменьшение данного числа на несколько единиц. Закрепление

Конспект урока математики во 2 классе (специальном коррекционном 8 вида). Тема. :. «Задачи на увеличение и уменьшение данного числа на несколько ...
задачи на уменьшение числа на несколько единиц

задачи на уменьшение числа на несколько единиц

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К УРОКУ. ТЕМА: задачи на уменьшение числа на несколько единиц (на два множества). РЕШАЕМЫЕ ПРОБЛЕМЫ, ЦЕЛИ:. . -. образовательные. ...
Натуральные числа

Натуральные числа

Шишкина Татьяна Викторовна,. . учитель математики. . МБОУ г. Астрахани «СОШ № 20». Тема:. Натуральные числа. Класс. : 5. Тип урока. : урок ...
Натуральные числа и действия над ними

Натуральные числа и действия над ними

Учебные задания занимательного характера. 5класс. МОУ Булусинская СОШ им. Т.А.Бертагаева. . Учитель математики Альзонова Л.Д. . . Истинный педагог ...
Логарифм числа

Логарифм числа

Тема урока:. Логарифм числа (2 ч). Цели. :. закрепить. знание основных свойств показательной функции и умение решать показательные уравнения;. ...
Модуль числа

Модуль числа

УРОК. 6 класс по теме:. Тема урока. : Модуль числа. Цель урока. : - ввести понятие модуля числа;. ...
Вычитание из числа 10. Состав числа

Вычитание из числа 10. Состав числа

Пакалина Наталья Алексеевна. МБОУ "СОШ №64"г. Астрахань. учитель начальных классов. Вычитание из числа 10 . Состав числа. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:6 декабря 2018
Категория:Математика
Содержит:17 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации