- История развития понятия функции

Презентация "История развития понятия функции" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33

Презентацию на тему "История развития понятия функции" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 33 слайд(ов).

Слайды презентации

МОУ Гимназия имени академика Н.Г. Басова при Воронежском госуниверситете Белоусова Алла Генриховна, учитель математики, кандидат педагогических наук
Слайд 1

МОУ Гимназия имени академика Н.Г. Басова при Воронежском госуниверситете Белоусова Алла Генриховна, учитель математики, кандидат педагогических наук

История развития понятия функции. Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.
Слайд 2

История развития понятия функции

Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.

Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5тыс.лет на
Слайд 3

Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5тыс.лет назад) пусть несознательно, но установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы:

Понятие переменной величины. Греки рассматривали лишь вопросы, имеющие “геометрическую” природу, и не ставили вопроса об общем изучении различных зависимостей. Графическое изображение зависимостей широко использовали Г. Галилей (1564–1642), П. Ферма (1601–1665) и Р. Декарт (1569–1650), который ввел
Слайд 4

Понятие переменной величины

Греки рассматривали лишь вопросы, имеющие “геометрическую” природу, и не ставили вопроса об общем изучении различных зависимостей. Графическое изображение зависимостей широко использовали Г. Галилей (1564–1642), П. Ферма (1601–1665) и Р. Декарт (1569–1650), который ввел понятие «переменной величины».

Рене Декарт

Развитие механики и техники. Развитие механики и техники потребовало введения общего понятия функции, что было сделано немецким философом и математиком Г. Лейбницем (1646 – 1716).
Слайд 5

Развитие механики и техники

Развитие механики и техники потребовало введения общего понятия функции, что было сделано немецким философом и математиком Г. Лейбницем (1646 – 1716).

Само слово “функция” (от латинского functio - совершение, выполнение) впервые было употреблено Лейбницем в 1673г. в письме к Гюйгенсу (под функцией он понимал отрезок, длина которого меняется по какому-нибудь определенному закону). В печати он ввел этот термин с 1694 года. Начиная с 1698 года, Лейбн
Слайд 6

Само слово “функция” (от латинского functio - совершение, выполнение) впервые было употреблено Лейбницем в 1673г. в письме к Гюйгенсу (под функцией он понимал отрезок, длина которого меняется по какому-нибудь определенному закону). В печати он ввел этот термин с 1694 года. Начиная с 1698 года, Лейбниц ввел также термины “переменная” и “константа”.

В 18 веке появляется новый взгляд на функцию как на формулу, связывающую одну переменную с другой. Это так называемая аналитическая точка зрения на понятие функции. Подход к такому определению впервые сделал швейцарский математик Иоганн Бернулли (1667-1748), который в 1718 году определил функцию сле
Слайд 7

В 18 веке появляется новый взгляд на функцию как на формулу, связывающую одну переменную с другой. Это так называемая аналитическая точка зрения на понятие функции. Подход к такому определению впервые сделал швейцарский математик Иоганн Бернулли (1667-1748), который в 1718 году определил функцию следующим образом: “Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных”.

Развитие понятия функции. Следующий шаг в развитии понятия функции сделал гениальный ученик Бернулли, член Петербургской Академии наук Леонард Эйлер (1707 – 1783). Он писал: “Величины, зависящие от других так, что с изменениями вторых изменяются и первые, принято называть их функциями”.
Слайд 8

Развитие понятия функции

Следующий шаг в развитии понятия функции сделал гениальный ученик Бернулли, член Петербургской Академии наук Леонард Эйлер (1707 – 1783). Он писал: “Величины, зависящие от других так, что с изменениями вторых изменяются и первые, принято называть их функциями”.

В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 году, 28-летний советский математик и механик С. Л. Соболев первым рассмотрел частный случай обобщенной функции.
Слайд 9

В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 году, 28-летний советский математик и механик С. Л. Соболев первым рассмотрел частный случай обобщенной функции.

Функцией называется соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент другого множества.
Слайд 10

Функцией называется соответствие между двумя множествами, при котором каждому элементу одного множества соответствует единственный элемент другого множества.

Функции рядом с нами
Слайд 11

Функции рядом с нами

Любоваться природой можно и не зная математики. Но понять ее, увидеть то, что скрыто за внешними образами явлений можно лишь с помощью точной науки. Только она позволяет заметить, что в явлениях природы есть формы и ритмы, недоступные глазу созерцателя, но открытые глазу аналитика.
Слайд 12

Любоваться природой можно и не зная математики. Но понять ее, увидеть то, что скрыто за внешними образами явлений можно лишь с помощью точной науки. Только она позволяет заметить, что в явлениях природы есть формы и ритмы, недоступные глазу созерцателя, но открытые глазу аналитика.

Знание законов природы дало человеку возможность объяснять и предсказывать ее разнообразнейшие явления. «Математическими портретами» закономерностей природы и служит функция.
Слайд 13

Знание законов природы дало человеку возможность объяснять и предсказывать ее разнообразнейшие явления. «Математическими портретами» закономерностей природы и служит функция.

График делает информацию о функции зримой и наглядной. Выразительная «картинка» вмиг расскажет о характерных особенностях и поведении функции.
Слайд 14

График делает информацию о функции зримой и наглядной. Выразительная «картинка» вмиг расскажет о характерных особенностях и поведении функции.

«…Но кривая линия – геометрический эквивалент функции – гораздо больше говорит воображению, чем формула, и гораздо более обозрима, чем таблица числовых значений» В.И. Гончаров
Слайд 15

«…Но кривая линия – геометрический эквивалент функции – гораздо больше говорит воображению, чем формула, и гораздо более обозрима, чем таблица числовых значений» В.И. Гончаров

Графиком функции называют множество точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции.
Слайд 16

Графиком функции называют множество точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции.

Чтобы наглядно проиллюстрировать характерные свойства функции, обратимся к пословицам. Ведь пословицы – это тоже отражение устойчивых закономерностей, выверенных многовековым опытом народа.
Слайд 17

Чтобы наглядно проиллюстрировать характерные свойства функции, обратимся к пословицам. Ведь пословицы – это тоже отражение устойчивых закономерностей, выверенных многовековым опытом народа.

С помощью схематичных графиков функции проиллюстрируйте смысл пословиц: Каково жизнь проживёшь - такую славу наживёшь. Какой мерой меряешь, такой и тебе отмерится. Каши маслом не испортишь. Чем дальше в лес, тем больше дров. Дальше от кумы – меньше греха. Выше меры конь не скачет. Пересев хуже недос
Слайд 18

С помощью схематичных графиков функции проиллюстрируйте смысл пословиц:

Каково жизнь проживёшь - такую славу наживёшь. Какой мерой меряешь, такой и тебе отмерится. Каши маслом не испортишь. Чем дальше в лес, тем больше дров. Дальше от кумы – меньше греха. Выше меры конь не скачет. Пересев хуже недосева.

Каково жизнь проживёшь - такую славу наживёшь.
Слайд 19

Каково жизнь проживёшь - такую славу наживёшь.

функции в нашей жизни
Слайд 20

функции в нашей жизни

Диалектика природы. «Когда математика стала изучать переменные величины и функции, лишь только она научилась описывать процессы, движение, так она стала необходима всем». Фридрих Энгельс.
Слайд 21

Диалектика природы

«Когда математика стала изучать переменные величины и функции, лишь только она научилась описывать процессы, движение, так она стала необходима всем». Фридрих Энгельс.

Функции в нашей жизни. Современная математика знает множество функций, и у каждой свой «неповторимый облик», как неповторим облик каждого из миллиардов людей, живущих на Земле.
Слайд 22

Функции в нашей жизни

Современная математика знает множество функций, и у каждой свой «неповторимый облик», как неповторим облик каждого из миллиардов людей, живущих на Земле.

Прямая пропорциональность
Слайд 23

Прямая пропорциональность

Периодические функции
Слайд 24

Периодические функции

Квадратичная функция. Траекторией камня, брошенного под углом к горизонту, летящего футбольного мяча или артиллерийского снаряда будет парабола.
Слайд 25

Квадратичная функция

Траекторией камня, брошенного под углом к горизонту, летящего футбольного мяча или артиллерийского снаряда будет парабола.

Обратная пропорциональная зависимость
Слайд 26

Обратная пропорциональная зависимость

История развития понятия функции Слайд: 27
Слайд 27
Применение в химии
Слайд 28

Применение в химии

Применение в метеорологии
Слайд 29

Применение в метеорологии

Применение в биологии
Слайд 30

Применение в биологии

Применение в астрономии
Слайд 31

Применение в астрономии

В наши дни без функций невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологичных процессов, прогнозировать течение химических ре
Слайд 32

В наши дни без функций невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологичных процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это – динамические процессы, которые описывает функция.

МОУ Гимназия имени академика Н.Г. Басова при Воронежском госуниверситете. Последняя форма определения функции еще не означает конца ее истории. Можно не сомневаться, что в дальнейшем под воздействием новых требований как самой математики, так и других наук – физики, биологии, науки об обществе, опре
Слайд 33

МОУ Гимназия имени академика Н.Г. Басова при Воронежском госуниверситете

Последняя форма определения функции еще не означает конца ее истории. Можно не сомневаться, что в дальнейшем под воздействием новых требований как самой математики, так и других наук – физики, биологии, науки об обществе, определение функции будет изменяться и каждое следующее изменение будет открывать новые горизонты науки и приводить к важным открытиям. С.Л. Соболев Белоусова А.Г., учитель математики, кандидат педагогических наук

Список похожих презентаций

История развития понятия функции

История развития понятия функции

Функции, как и живые существа, характеризуются своими особенностями. П. Монтель. Идея функциональной зависимости восходит к древности. Ее содержание ...
История введения понятия функции в школьный курс математики и современность

История введения понятия функции в школьный курс математики и современность

Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира. Во второй половине ...
История развития тригонометрии

История развития тригонометрии

Слово тригонометрия впервые встречается в 1505 году в заглавии книги немецкого математика Питискуса. Тригонометрия – слово греческое и в буквальном ...
История развития математики

История развития математики

Палеолит. Первоначальные представления о числе и форме. Неолит. Развитие ремёсел: Гончарное Ткацкое Плотническое. Счёт австралийских племён:. Племя ...
История развития математики

История развития математики

Содержание Математика - это ? Возникновение арифметики и геометрии. Древний Восток Вавилон Древняя Греция Заключение. Математика - это наука, исторически ...
История возникновения и развития математики"

История возникновения и развития математики"

«Учиться можно только весело … Чтобы переваривать знания, надо поглощать их с аппетитом» Анатоль Франс. Цели урока:. 1.Обобщить начальные сведения ...
История развития геометрии

История развития геометрии

ВВЕДЕНИЕ:. Геометрия возникла очень давно, это одна из самых древних наук. Геометрия (греческое, от geо — земля и metrein — измерять) - такое название ...
Наукометрия: история и основные понятия

Наукометрия: история и основные понятия

Немного истории 1965 год. 1955 год – Юджин Гарфилд создает Институт научной информации (ISI). 1961 год – Science Citation Index и Journal Citation ...
История возникновения и развития математики

История возникновения и развития математики

ХОД ИГРЫ. 1. Решить уравнения: а)4,7y-(2,5y+12,4)=1,9 б)3,5x-(2,3x-3,8)=4,28. «Первая тройка». Витя Верхоглядкин отыскал правильную дробь, которая ...
Взаимное расположение графиков линейной функции

Взаимное расположение графиков линейной функции

Разбейте функции, заданные формулами, на группы:. у = 2х - 3; у = х2 - 3; у = - 5х; у = 4 - 0,5х; у = - х +2; у=15х;. 7. 8. 9. 10. у = х (1 - х). ...
Основные понятия теории вероятности

Основные понятия теории вероятности

Теория вероятностей. Введение. Основные комбинаторные объекты. Элементы теории вероятности. Задачи в которых производится подсчет всех возможных комбинаций ...
Коэффициенты квадратной функции

Коэффициенты квадратной функции

Предисловие. В данном проекте автор специально не использовал теоретическое обоснование, а только выводы на их основе. Для более глубокого и полного ...
Наибольшее и наименьшее значения функции

Наибольшее и наименьшее значения функции

(x²)′= (2x³)′= (7x)′= (10)′= (128 )′= (5x² + 3x - 9 )′= x² 6x² 0 7 10x + 3. АЛГОРИТМ. Найти точки экстремума функции, т. е. точки в которых производная ...
Взаимно обратные функции

Взаимно обратные функции

Цель проекта: Изучить поведение взаимно обратных функций. Установить связь графиков прямой и обратной функций. Подготовиться к успешной сдаче ЕГЭ. ...
История чисел и системы счисления

История чисел и системы счисления

Содержание. Понятие «системы счисления» История чисел Виды систем счисления Непозиционные системы счисления Позиционные системы счисления Арабская ...
Геометрические понятия

Геометрические понятия

"Начала" (ОК. 365-360Г. ДО Н. Э) Эвклид. Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не ...
Приёмы развития интеллектуальных умений и творческих способностей младших школьников на уроках математики

Приёмы развития интеллектуальных умений и творческих способностей младших школьников на уроках математики

Творческие способности —. особый вид умственных способностей, выражающихся в умении продолжать мыслительную деятельность за пределами требуемого, ...
Возрастание и убывание функции

Возрастание и убывание функции

Числовые промежутки. [α;b] – отрезок (α;b) – интервал (α;b] – полуинтервал [α;b) - полуинтервал. Функция f(x) называется возрастающей на некотором ...
Вычисление производной функции

Вычисление производной функции

При вычислении производной функции, будем иметь в виду, что один из способов найти производную - это взять достаточно малые значения справа и слева ...
Влияние коэффициентов а, b и с на расположение графика квадратной функции

Влияние коэффициентов а, b и с на расположение графика квадратной функции

Определите, график какой функции изображен на рисунке:. у = х² – 2х – 1; у = –2х² – 8х; у = х² – 4х – 1; у = 2х² + 8х + 7; у = 2х² – 1. у = ½х² – ...

Конспекты

Применение понятия периодической функции

Применение понятия периодической функции

РАЗРАБОТКА УРОКА. учителя математики МОУ гимназии № 35 г.о. Тольятти. Батаевой Галины Александровны. Предмет: алгебра и начала анализа. Класс: ...
История возникновения и развития геометрии. Начальные геометрические сведения

История возникновения и развития геометрии. Начальные геометрические сведения

Урок геометрии с использованием ИКТ. . Класс:. 7. Учитель:. Петрова Марина Николаевна,. учитель математики МБОУ СОШ №76. . Орджоникидзевского ...
Преобразование графика тригонометрической функции у = sin x путем сжатия и расширения

Преобразование графика тригонометрической функции у = sin x путем сжатия и расширения

Предмет:. алгебра 10 кл. Тема урока:. «Преобразование графика тригонометрической функции у = sin. x. путем сжатия и расширения». Тип урока:. ...
Построение графика квадратичной функции с использованием сдвигов по осям координат

Построение графика квадратичной функции с использованием сдвигов по осям координат

МБОУ Чистопольская СОШ. Урок алгебры в 8 классе. Тема «Построение графика квадратичной функции с использованием сдвигов по осям координат». ...
Построение графика квадратичной функции

Построение графика квадратичной функции

Учитель: Рогачева Татьяна Викторовна. Место работы: ГОУ СОШ №103, Санкт-Петербург. Должность: Учитель математики. Урок алгебры в 9 классе. . ...
Чётность и нечётность функции

Чётность и нечётность функции

Урок по теме : Чётность и нечётность функции. 9-й класс. Учитель математики: Семенова Н.Н. Цель урока:. рассмотреть свойство графиков чётной ...
Степенные функции, их свойства и графики

Степенные функции, их свойства и графики

Тема урока:. . «Степенные функции, их свойства и графики». . Цели урока:. . Образовательная:. Создать условия для закрепления знаний о свойствах ...
Простейшие геометрические понятия

Простейшие геометрические понятия

Емцева Юлия Ивановна. . Гимназия №33 г.Краснодара. . Учитель начальных классов. . . Урок математики в 1 классе. (здоровьесберегающие ...
Возрастание и убывание функции

Возрастание и убывание функции

Муниципальное общеобразовательное учреждение. . Копорская средняя общеобразовательная школа. Ленинградской области. КОНСПЕКТ УРОКА. ...
Возрастание и убывание функции

Возрастание и убывание функции

Муниципальное бюджетное общеобразовательное учреждение. гимназия №19 им Поповичевой Н.З., г. Липецка. Конспект урока по алгебре в 9 классе (политехнический ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:17 ноября 2018
Категория:Математика
Содержит:33 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации