- Неравенства в математике

Презентация "Неравенства в математике" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36

Презентацию на тему "Неравенства в математике" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 36 слайд(ов).

Слайды презентации

НЕРАВЕНСТВА (8 КЛАСС)
Слайд 1

НЕРАВЕНСТВА (8 КЛАСС)

Разработано учителем математики МОУ «СОШ» п. Аджером Корткеросского района Республики Коми Мишариной Альбиной Геннадьевной
Слайд 2

Разработано учителем математики МОУ «СОШ» п. Аджером Корткеросского района Республики Коми Мишариной Альбиной Геннадьевной

СОДЕРЖАНИЕ. Линейные неравенства Квадратные неравенства
Слайд 3

СОДЕРЖАНИЕ

Линейные неравенства Квадратные неравенства

Линейные неравенства (8 класс)
Слайд 4

Линейные неравенства (8 класс)

Математику нельзя изучать, наблюдая как это делает сосед.
Слайд 5

Математику нельзя изучать, наблюдая как это делает сосед.

Неравенства бывают: линейные квадратные рациональные иррациональные
Слайд 6

Неравенства бывают: линейные квадратные рациональные иррациональные

Вспомним:
Слайд 7

Вспомним:

Изобразите на координатной прямой промежуток (работаем в парах): 1) [-2;4] 2) (-3;3) 3) (3;+∞) 4) (-∞;4] 5) (-5;+∞) 6) (0;7]. а) х≥2 в) х≤3 с) х>8 д) х
Слайд 8

Изобразите на координатной прямой промежуток (работаем в парах):

1) [-2;4] 2) (-3;3) 3) (3;+∞) 4) (-∞;4] 5) (-5;+∞) 6) (0;7]

а) х≥2 в) х≤3 с) х>8 д) х

Линейные неравенства. Определения: Запись вида а>в; а≥в или ав, а
Слайд 9

Линейные неравенства

Определения: Запись вида а>в; а≥в или ав, а

Правила: 1) Любой член неравенства можно переносить из одной части неравенства в другую, изменив его знак на противоположный, при этом знак неравенства не изменится.
Слайд 10

Правила: 1) Любой член неравенства можно переносить из одной части неравенства в другую, изменив его знак на противоположный, при этом знак неравенства не изменится.

Правила: 2) Обе части неравенства можно умножить или разделить на одно и тоже положительное число, при этом знак неравенства не изменится.
Слайд 11

Правила: 2) Обе части неравенства можно умножить или разделить на одно и тоже положительное число, при этом знак неравенства не изменится.

Правила: 3) Обе части неравенства можно умножить или разделить на одно и тоже отрицательное число, при этом знак неравенства изменится на противоположный.
Слайд 12

Правила: 3) Обе части неравенства можно умножить или разделить на одно и тоже отрицательное число, при этом знак неравенства изменится на противоположный.

Решим неравенство: 16х>13х+45. Решение: 16х-13х > 45 слагаемое 13х с противоположным знаком перенесли в левую часть неравенства 3х > 45 привели подобные слагаемые х > 15 поделили обе части неравенства на 3 15 х Ответ: (15;+∞)
Слайд 13

Решим неравенство: 16х>13х+45

Решение: 16х-13х > 45 слагаемое 13х с противоположным знаком перенесли в левую часть неравенства 3х > 45 привели подобные слагаемые х > 15 поделили обе части неравенства на 3 15 х Ответ: (15;+∞)

Решить неравенство: 2х + 4 ≥ 6 2х ≥ -4 + 6 2х ≥ 2 х ≥ 1. х 1 Ответ: [1;+∞).
Слайд 14

Решить неравенство:

2х + 4 ≥ 6 2х ≥ -4 + 6 2х ≥ 2 х ≥ 1

х 1 Ответ: [1;+∞).

Решить неравенства в парах: 1) х+2 ≥ 2,5х-1; 2) х- 0,25(х+4)+0,5(3х-1) > 3; 3) х²+х
Слайд 15

Решить неравенства в парах:

1) х+2 ≥ 2,5х-1; 2) х- 0,25(х+4)+0,5(3х-1) > 3; 3) х²+х

Проверим: х+2 ≥ 2,5х-1 Решение: х-2,5х ≥ -2 -1 - 1,5х ≥ - 3 х ≤ 2 2 х Ответ: (-∞;2]. 2) х²+х
Слайд 16

Проверим:

х+2 ≥ 2,5х-1 Решение: х-2,5х ≥ -2 -1 - 1,5х ≥ - 3 х ≤ 2 2 х Ответ: (-∞;2]

2) х²+х

Самостоятельная работа по вариантам: решить неравенства. Вариант 1. 1) 3х≤21 2) -5х14 5) 3-9х≤1-х 6) 5(х+4). Вариант 2. 1) 2х≥18 2) -4х>16 3) 5х+11≥1 4) 3-2х2(5х-7)
Слайд 17

Самостоятельная работа по вариантам: решить неравенства

Вариант 1. 1) 3х≤21 2) -5х14 5) 3-9х≤1-х 6) 5(х+4)

Вариант 2. 1) 2х≥18 2) -4х>16 3) 5х+11≥1 4) 3-2х2(5х-7)

Проверим ответы: Вариант 1. 1) (-∞;7] 2) (7;∞) 3) (-∞;-1] 4) (-∞;-2) 5) [0,25;∞) 6) (10;∞). Вариант 2. 1) [9;∞) 2) (-∞;-4) 3) [-2;∞) 4) (2;∞) 5) (-∞;0,5] 6) (-∞;9)
Слайд 18

Проверим ответы:

Вариант 1. 1) (-∞;7] 2) (7;∞) 3) (-∞;-1] 4) (-∞;-2) 5) [0,25;∞) 6) (10;∞)

Вариант 2. 1) [9;∞) 2) (-∞;-4) 3) [-2;∞) 4) (2;∞) 5) (-∞;0,5] 6) (-∞;9)

Самостоятельная работа. Найдите наименьшее целое число, являющееся решением неравенства: 1) 2(х-3)-1-3(х-2)-4(х+1)
Слайд 19

Самостоятельная работа

Найдите наименьшее целое число, являющееся решением неравенства: 1) 2(х-3)-1-3(х-2)-4(х+1)

1) 2(х-3)-1-3(х-2)-4(х+1)  -1 -1 х Ответ: 0. 2) 0,2(2х+2)-0,5(х-1) 11 11 х Ответ: 12
Слайд 20

1) 2(х-3)-1-3(х-2)-4(х+1) -1 -1 х Ответ: 0

2) 0,2(2х+2)-0,5(х-1) 11 11 х Ответ: 12

Решаем сами: Найдите наименьшее натуральное число, являющееся решением неравенства 3х-3
Слайд 21

Решаем сами:

Найдите наименьшее натуральное число, являющееся решением неравенства 3х-3

КВАДРАТНЫЕ НЕРАВЕНСТВА (8 класс)
Слайд 22

КВАДРАТНЫЕ НЕРАВЕНСТВА (8 класс)

Неравенства в математике Слайд: 23
Слайд 23
Квадратные неравенства. Определение: Квадратным называется неравенство, левая часть которого − квадратный трёхчлен, а правая часть равна нулю: ах²+bх+с>0 ах²+bх+с≥0 ах²+bх+с
Слайд 24

Квадратные неравенства

Определение: Квадратным называется неравенство, левая часть которого − квадратный трёхчлен, а правая часть равна нулю: ах²+bх+с>0 ах²+bх+с≥0 ах²+bх+с

Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство Решить неравенство − это значит найти все его решения или установить, что их нет.
Слайд 25

Решением неравенства с одним неизвестным называется то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство Решить неравенство − это значит найти все его решения или установить, что их нет.

Являются ли следующие неравенства квадратными? А) 4у² - 5у +7 > 0 Б) 2х - 4 > 0 В) 4х² - 2х ≥ 0 Г) 3у – 5у² + 7
Слайд 26

Являются ли следующие неравенства квадратными?

А) 4у² - 5у +7 > 0 Б) 2х - 4 > 0 В) 4х² - 2х ≥ 0 Г) 3у – 5у² + 7

Основные способы решения квадратных неравенств: Метод интервалов Графический метод
Слайд 27

Основные способы решения квадратных неравенств:

Метод интервалов Графический метод

Запомним: Чтобы решить квадратное неравенство ах²+вх+с >0 методом интервалов надо: 1) Найти корни соответствующего квадратного уравнения ах²+вх+с = 0; 2) Корни уравнения нанести на числовую ось; 3) Разделить числовую ось на интервалы; 3) Определить знаки функции в каждом из интервалов; 4) Выбрать
Слайд 28

Запомним:

Чтобы решить квадратное неравенство ах²+вх+с >0 методом интервалов надо: 1) Найти корни соответствующего квадратного уравнения ах²+вх+с = 0; 2) Корни уравнения нанести на числовую ось; 3) Разделить числовую ось на интервалы; 3) Определить знаки функции в каждом из интервалов; 4) Выбрать подходящие интервалы и записать ответ.

Решим квадратное неравенство методом интервалов: Дано неравенство: х² + х – 6 ≥ 0 Решение: 1) решим соответствующее квадратное уравнение х² + 5х – 6 = 0. Т.к. а+в+с=0, то х₁ =1, а х₂ = - 6 2) -6 1 х 3) Запишем ответ: (-∞; -6]U[1; +∞). + -
Слайд 29

Решим квадратное неравенство методом интервалов:

Дано неравенство: х² + х – 6 ≥ 0 Решение: 1) решим соответствующее квадратное уравнение х² + 5х – 6 = 0. Т.к. а+в+с=0, то х₁ =1, а х₂ = - 6 2) -6 1 х 3) Запишем ответ: (-∞; -6]U[1; +∞)

+ -

Работаем в парах: Решить неравенства: 1) х²-3х0; 3) х²+2х≥0; 4) -2х²+х+1≤0. Проверим ответы: (0;3) (-∞;0)U(4;+∞) (-∞; -2]U[0; +∞) (-∞; - 0,5]U[1; +∞)
Слайд 30

Работаем в парах:

Решить неравенства: 1) х²-3х0; 3) х²+2х≥0; 4) -2х²+х+1≤0

Проверим ответы: (0;3) (-∞;0)U(4;+∞) (-∞; -2]U[0; +∞) (-∞; - 0,5]U[1; +∞)

Решите неравенства методом интервалов самостоятельно: Решить неравенства 1) х(х+7)≥0; 2) (х-1)(х+2)≤0; 3) х- х²+20; 5) х(х+2). Проверим ответы: 1) (-∞;-7]U[0; +∞) 2) [-2;1] 3) (-∞;-1)U(2; +∞) 4) (-6;1) 5) (-5;3)
Слайд 31

Решите неравенства методом интервалов самостоятельно:

Решить неравенства 1) х(х+7)≥0; 2) (х-1)(х+2)≤0; 3) х- х²+20; 5) х(х+2)

Проверим ответы: 1) (-∞;-7]U[0; +∞) 2) [-2;1] 3) (-∞;-1)U(2; +∞) 4) (-6;1) 5) (-5;3)

Графический метод решения квадратного неравенства: 1).Определить направление ветвей параболы, по знаку первого коэффициента квадратичной функции. 2).Найти корни соответствующего квадратного уравнения; 3). Построить эскиз графика и по нему определить промежутки, на которых квадратичная функция приним
Слайд 32

Графический метод решения квадратного неравенства:

1).Определить направление ветвей параболы, по знаку первого коэффициента квадратичной функции. 2).Найти корни соответствующего квадратного уравнения; 3). Построить эскиз графика и по нему определить промежутки, на которых квадратичная функция принимает положительные или отрицательные значения

Например: Решить графически неравенство х²+5х-6≤0 Решение: рассмотрим у = х²+5х-6, это квадратичная функция, графиком является парабола, т.к. а=1, то ветви направлены вверх. у + + -6 1 x Ответ: [-6;1]
Слайд 33

Например:

Решить графически неравенство х²+5х-6≤0 Решение: рассмотрим у = х²+5х-6, это квадратичная функция, графиком является парабола, т.к. а=1, то ветви направлены вверх. у + + -6 1 x Ответ: [-6;1]

Решите графически неравенства в парах: 1) х²-3х0; 3) х²+2х≥0; 4) -2х²+х+1≤0
Слайд 34

Решите графически неравенства в парах:

1) х²-3х0; 3) х²+2х≥0; 4) -2х²+х+1≤0

Всем СПАСИБО ЗА УРОК!!!
Слайд 35

Всем СПАСИБО ЗА УРОК!!!

Источники изображений. http://www.istina.org/Video/Glbs.JPG http://www.ufps.kamchatka.ru/uploads/news/school_/Colorful%20notebooks%20and%20pen.jpg http://88.198.21.149/images/photoframes/2010/6/02/17/55/ZkYjfVBHuYRh97SNf65.jpg http://psychology.careeredublogs.com/files/2010/02/school.jpg
Слайд 36

Источники изображений

http://www.istina.org/Video/Glbs.JPG http://www.ufps.kamchatka.ru/uploads/news/school_/Colorful%20notebooks%20and%20pen.jpg http://88.198.21.149/images/photoframes/2010/6/02/17/55/ZkYjfVBHuYRh97SNf65.jpg http://psychology.careeredublogs.com/files/2010/02/school.jpg

Список похожих презентаций

Активизация познавательной деятельности при обучении математике

Активизация познавательной деятельности при обучении математике

. Народная Классическая Педагогическая Цирковая (эстрадная) Спортивная. Группировка Классификация Систематизация Ассоциация Аналогия Рифмитизация ...
В математике нет символов для неясных мыслей

В математике нет символов для неясных мыслей

"Математику уже затем учить надо, что она ум в порядок приводит". М.В.Ломоносов (1711?-1765). гениальный русский ученый во многих отраслях знаний, ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
"Великие" о математике

"Великие" о математике

Карл Фридрих Гаусс (1777-1855). "Математика - царица наук, арифметика - царица математики". Софья Васильевна Ковалевская (1850-1891). "Нельзя быть ...
Апробация инструментария диагностических исследований профессиональной компетентности учителей начальных классов по математике

Апробация инструментария диагностических исследований профессиональной компетентности учителей начальных классов по математике

Проводится в соответствии приказом управления образования и науки области от 18.03.2010 №841 «О проведении апробации инструментария диагностического ...
Бумажные складные модели и их использование на уроках геометрии в 10 классе

Бумажные складные модели и их использование на уроках геометрии в 10 классе

Модель 1 – «Две пересекающиеся плоскости». Согнутый пополам лист бумаги служит моделью двух пересекающихся плоскостей. Линия сгиба – прямая их пересечения. ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
2 класс Тренажер по математике

2 класс Тренажер по математике

Выбери героя, нажав на него, с кем хочешь проверить свои знания! 7 + 7 18 12 14. 7 + 9 16 15. 7 + 4 11. 7 + 8 17. 7 + 6 13. 10 + 6. 10 + 8 10. 10 ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Олимпийский» задачник по математике

«Олимпийский» задачник по математике

Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи — решайте их Д. Пойа. Если мы действительно что-то ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
Анализ контрольной работы по математике на тему "Натуральные числа и шкалы"

Анализ контрольной работы по математике на тему "Натуральные числа и шкалы"

Натуральные числа и шкалы. 5 к л а с с № 1. Цели деятельности учителя. Главная дидактическая цель : организовать деятельность учащихся, направленную ...
Анализ обучающих программ по математике 1-4 класс

Анализ обучающих программ по математике 1-4 класс

Интерактивная математика для 1-4 классов. Программа фирмы Marco Polo Group. Описание продукта: Интерактивный тренажер по математике для начальной ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
Арифметическая и геометрическая прогрессии в заданиях ГИА

Арифметическая и геометрическая прогрессии в заданиях ГИА

Цели урока: Обобщить и систематизировать знания учащихся по данной теме. Разобрать типичные задания встречающихся в сборниках для подготовки к ГИА. ...

Конспекты

Без слов и грамматики не учат математике

Без слов и грамматики не учат математике

Интегрированный (бинарный) урок по русскому языку и геометрии в 7 классе. ТЕМА УРОКА: «Без слов и грамматики не учат математике». ТИП УРОКА: ...
Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:29 октября 2018
Категория:Математика
Содержит:36 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации