- Методические особенности обучения учащихся решению уравнений в курсе математики 5-7 классов

Презентация "Методические особенности обучения учащихся решению уравнений в курсе математики 5-7 классов" (7 класс) по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43

Презентацию на тему "Методические особенности обучения учащихся решению уравнений в курсе математики 5-7 классов" (7 класс) можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 43 слайд(ов).

Слайды презентации

Учитель математики МБОУ «Гимназия № 97 г. Ельца» Агеева Юлия Владимировна. Мастер-класс «Методические особенности обучения учащихся решению уравнений в курсе математики 5 – 7 классов»
Слайд 1

Учитель математики МБОУ «Гимназия № 97 г. Ельца» Агеева Юлия Владимировна

Мастер-класс «Методические особенности обучения учащихся решению уравнений в курсе математики 5 – 7 классов»

Уравнение – это золотой ключ, открывающий все математические сезамы. С. Коваль
Слайд 2

Уравнение – это золотой ключ, открывающий все математические сезамы. С. Коваль

Цели: рассмотреть различные виды уравнений, изучаемые в курсе математики 5-7 классов; привести алгоритмы их решения; дать методические рекомендации по обучению учащихся решению уравнений.
Слайд 3

Цели: рассмотреть различные виды уравнений, изучаемые в курсе математики 5-7 классов; привести алгоритмы их решения; дать методические рекомендации по обучению учащихся решению уравнений.

Алгоритм – понятное предписание, указывающее, какие операции и в какой последовательности необходимо выполнить с данными, чтобы решить любую задачу данного типа.
Слайд 4

Алгоритм – понятное предписание, указывающее, какие операции и в какой последовательности необходимо выполнить с данными, чтобы решить любую задачу данного типа.

Характеристические свойства понятия «алгоритм»: Свойство массовости Свойство дискретности и элементарности шагов Свойство результативности Свойство детерминированности
Слайд 5

Характеристические свойства понятия «алгоритм»:

Свойство массовости Свойство дискретности и элементарности шагов Свойство результативности Свойство детерминированности

Всякий алгоритм описывает общий метод решения класса однотипных задач
Слайд 6

Всякий алгоритм описывает общий метод решения класса однотипных задач

Правило - «свернутый» алгоритм
Слайд 7

Правило - «свернутый» алгоритм

Всякий алгоритм можно назвать правилом, но не всякое правило можно назвать алгоритмом
Слайд 8

Всякий алгоритм можно назвать правилом, но не всякое правило можно назвать алгоритмом

Три основных этапа: введение алгоритма; усвоение алгоритма; применение алгоритма.
Слайд 9

Три основных этапа:

введение алгоритма; усвоение алгоритма; применение алгоритма.

Цели этапов: цель первого этапа – актуализация знаний, необходимых для введения и обоснования алгоритма, а также формулирование алгоритма; цель второго этапа – отработка операций, входящих в алгоритм, и усвоение их последовательности; цель третьего этапа – отработка алгоритма в знакомых (при варьиро
Слайд 10

Цели этапов:

цель первого этапа – актуализация знаний, необходимых для введения и обоснования алгоритма, а также формулирование алгоритма; цель второго этапа – отработка операций, входящих в алгоритм, и усвоение их последовательности; цель третьего этапа – отработка алгоритма в знакомых (при варьировании исходных данных) и незнакомых ситуациях.

Формы работы с учащимися: на первом этапе - устная работа на повторение. на втором этапе – письменная коллективная работа с широким использованием комментирования выполняемых действий. на третьем этапе – самостоятельная работа.
Слайд 11

Формы работы с учащимися:

на первом этапе - устная работа на повторение. на втором этапе – письменная коллективная работа с широким использованием комментирования выполняемых действий. на третьем этапе – самостоятельная работа.

V класс. Уравнения решаются на основе зависимости между результатом и компонентами арифметического действия.
Слайд 12

V класс

Уравнения решаются на основе зависимости между результатом и компонентами арифметического действия.

a+x=b. Правило: «Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое».
Слайд 13

a+x=b

Правило: «Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое».

a – x = в x – a = в. 1) «Чтобы найти неизвестное уменьшаемое, надо сложить вычитаемое и разность»; 2) «Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность».
Слайд 14

a – x = в x – a = в

1) «Чтобы найти неизвестное уменьшаемое, надо сложить вычитаемое и разность»; 2) «Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность».

13899 + x = 2716 + 13899 4х + 4х = 424 15а – 8а = 714 8,6 – (x + 2,75) = 1,85 45,7х + 0,3х – 2,4 = 89,6 x + 2,8 = 3,72 + 0,38
Слайд 15

13899 + x = 2716 + 13899 4х + 4х = 424 15а – 8а = 714 8,6 – (x + 2,75) = 1,85 45,7х + 0,3х – 2,4 = 89,6 x + 2,8 = 3,72 + 0,38

1) x + 37 = 85; 2) m – 94 = 18; 3) 85 – z = 36; 4) 4x = 144; 5) x : 8 = 13; 6) 42 : x = 6
Слайд 16

1) x + 37 = 85; 2) m – 94 = 18; 3) 85 – z = 36; 4) 4x = 144; 5) x : 8 = 13; 6) 42 : x = 6

Правило 1: Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое. Правило 2: Чтобы найти неизвестное уменьшаемое, надо сложить вычитаемое и разность. Правило 3: Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность. Правило 4: Чтобы найти неизвестный множит
Слайд 17

Правило 1: Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое. Правило 2: Чтобы найти неизвестное уменьшаемое, надо сложить вычитаемое и разность. Правило 3: Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность. Правило 4: Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель. Правило 5: Чтобы найти неизвестное делимое, надо частное умножить на делитель. Правило 6: Чтобы найти неизвестный делитель, надо делимое разделить на частное.

Учащиеся V класса сначала должны определить неизвестный компонент действия, а затем найти его, пользуясь одним из вышеперечисленных правил. x + 25 = 50 x = 50 – 25 x = 25 Ответ: 25. y + 64 = 48 + 38 y + 64 = 86 y = 86 – 64 y = 22 Ответ: 22
Слайд 18

Учащиеся V класса сначала должны определить неизвестный компонент действия, а затем найти его, пользуясь одним из вышеперечисленных правил.

x + 25 = 50 x = 50 – 25 x = 25 Ответ: 25

y + 64 = 48 + 38 y + 64 = 86 y = 86 – 64 y = 22 Ответ: 22

Задания: 1. Заполните пропуски в формулировках и определениях. Уравнением называется ____________, содержащее ____________. Корнем уравнения называется такое значение ______________, при котором уравнение обращается в _____________ равенство. Чтобы найти неизвестное уменьшаемое, нужно к ____________
Слайд 19

Задания:

1. Заполните пропуски в формулировках и определениях. Уравнением называется ____________, содержащее ____________. Корнем уравнения называется такое значение ______________, при котором уравнение обращается в _____________ равенство. Чтобы найти неизвестное уменьшаемое, нужно к _____________ вычитаемое. Чтобы найти неизвестное вычитаемое, нужно _______________ вычесть _______________.

2. Заполните пустые клетки в таблице.
Слайд 20

2. Заполните пустые клетки в таблице.

3. Узнайте, какое слово зашифровано в таблице.
Слайд 21

3. Узнайте, какое слово зашифровано в таблице.

VI класс. Общий приём решения уравнений: слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак.
Слайд 22

VI класс

Общий приём решения уравнений: слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак.

–x = 607 -а = -30,04 -5 + (а - 25) = -4 |y| = 20 |a| = 0 |b| = -3 7,2 – (6,2 - x) = 2,2 |x| = 9
Слайд 23

–x = 607 -а = -30,04 -5 + (а - 25) = -4 |y| = 20 |a| = 0 |b| = -3 7,2 – (6,2 - x) = 2,2 |x| = 9

«Универсальный» алгоритм решения линейных уравнений с одним неизвестным вида: 6x – 12 = 5x + 4. 1) раскрыть скобки (если таковые имеются); 2) оставить неизвестные в одной части уравнения, известные – в другой (уединение неизвестных); 3) привести подобные слагаемые; 4) разделить обе части уравнения н
Слайд 24

«Универсальный» алгоритм решения линейных уравнений с одним неизвестным вида: 6x – 12 = 5x + 4

1) раскрыть скобки (если таковые имеются); 2) оставить неизвестные в одной части уравнения, известные – в другой (уединение неизвестных); 3) привести подобные слагаемые; 4) разделить обе части уравнения на коэффициент при неизвестном; 5) записать ответ.

Пример. 5х + 3 = 2х + 9 5х – 2х = 9 – 3 3х = 6 x = 2 Ответ: 2
Слайд 25

Пример

5х + 3 = 2х + 9 5х – 2х = 9 – 3 3х = 6 x = 2 Ответ: 2

Первый этап формирования алгоритма. Устные упражнения на повторение: 1) Перенесите из левой части уравнения в правую то слагаемое, которое не содержит неизвестного: а) 8х + 5,9 = 7х + 20; б) 6х – 8 = -5х – 1,6. 2) Оставьте в левой части уравнения все слагаемые, содержащие неизвестное, а в правой – н
Слайд 26

Первый этап формирования алгоритма

Устные упражнения на повторение: 1) Перенесите из левой части уравнения в правую то слагаемое, которое не содержит неизвестного: а) 8х + 5,9 = 7х + 20; б) 6х – 8 = -5х – 1,6. 2) Оставьте в левой части уравнения все слагаемые, содержащие неизвестное, а в правой – не содержащие неизвестное: а) 15y – 8 = -6y +4,6; б) -16z + 1,7 = 2z – 1.

Устные упражнения на повторение: 3) Приведите подобные слагаемые: а) 15t + 8 – 8t – 6; б) 13a + 4 – 7a - 25a; в) 24m + 7 – 9m – 14m. 4) Раскройте скобки и приведите подобные слагаемые: а) 7b – (3b + 1); б) 3(x - 5) + 10x; в) -2(x + 1) + x.
Слайд 27

Устные упражнения на повторение: 3) Приведите подобные слагаемые: а) 15t + 8 – 8t – 6; б) 13a + 4 – 7a - 25a; в) 24m + 7 – 9m – 14m. 4) Раскройте скобки и приведите подобные слагаемые: а) 7b – (3b + 1); б) 3(x - 5) + 10x; в) -2(x + 1) + x.

Первый вид тестовых заданий. 1. Если перед скобками стоит знак «+», то можно опустить скобки и этот знак «+», _________________ знаки слагаемых, стоящих в скобках. 2. Раскройте скобки: -17,5 + (3,02 – 2,51) = __________________. 3. -(a + b) = __________________.
Слайд 28

Первый вид тестовых заданий

1. Если перед скобками стоит знак «+», то можно опустить скобки и этот знак «+», _________________ знаки слагаемых, стоящих в скобках. 2. Раскройте скобки: -17,5 + (3,02 – 2,51) = __________________. 3. -(a + b) = __________________.

4. Коэффициентом такого выражения, как a или ab, считают _________. 5. Слагаемые, имеющие одинаковую буквенную часть, называют ______________________ слагаемыми. 6. Выполните приведение подобных слагаемых: b – 2c + 4b – c = _________________________. 7. Если обе части уравнения умножить или разделит
Слайд 29

4. Коэффициентом такого выражения, как a или ab, считают _________. 5. Слагаемые, имеющие одинаковую буквенную часть, называют ______________________ слагаемыми. 6. Выполните приведение подобных слагаемых: b – 2c + 4b – c = _________________________. 7. Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то корни уравнения ________________________.

Второй вид тестовых заданий. 1. Выражение a + (b + c) можно записать без скобок: a + (b + c) = a + b + c 2. Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых. 3. Приведение подобных слагаемых выполняют на основании переместительного свойства умнож
Слайд 30

Второй вид тестовых заданий

1. Выражение a + (b + c) можно записать без скобок: a + (b + c) = a + b + c 2. Чтобы записать сумму, противоположную сумме нескольких слагаемых, надо изменить знаки данных слагаемых. 3. Приведение подобных слагаемых выполняют на основании переместительного свойства умножения. 4. Число -30 является корнем уравнения 0,5х – 15 = х.

Третий вид тестовых заданий. 1. Раскройте скобки в выражении: a – (b + c - d) А) a – b + c – d; Б) a – b – c + d; В) a + b + c – d. 2. Найдите значение выражения: 25 – (12 - 53) А) -40; Б) -16; В) 66. 3. Упростите: 5x – 5y – 6x + y А) –x – 5y; Б) -6x + y; В) –x – 4y. 4. Найдите корень уравнения: 4 –
Слайд 31

Третий вид тестовых заданий

1. Раскройте скобки в выражении: a – (b + c - d) А) a – b + c – d; Б) a – b – c + d; В) a + b + c – d. 2. Найдите значение выражения: 25 – (12 - 53) А) -40; Б) -16; В) 66. 3. Упростите: 5x – 5y – 6x + y А) –x – 5y; Б) -6x + y; В) –x – 4y. 4. Найдите корень уравнения: 4 – 3y = 7 - y А) 1,5; Б) -1; В) -1,5.

Второй этап формирования алгоритма. Решите уравнения: 1) -2x + 16 = 5x – 19 2) 4(3 – 2x) + 24 = 2(3 + 2x) 3) 15 – 3(x - 8) = 3 4) 0,5(4 + x) – 0,4(x - 3) = 2,5 5) 0,4(x - 9) – 0,3(x + 2) = 0,7
Слайд 32

Второй этап формирования алгоритма

Решите уравнения: 1) -2x + 16 = 5x – 19 2) 4(3 – 2x) + 24 = 2(3 + 2x) 3) 15 – 3(x - 8) = 3 4) 0,5(4 + x) – 0,4(x - 3) = 2,5 5) 0,4(x - 9) – 0,3(x + 2) = 0,7

Третий этап формирования алгоритма. Решите уравнения: 18 = 3y + 3 6x + 10 = 5x + 15 -5n – 16 = 3n 8 – 5n = 10 – 4n 9m – 8 = 6m + 7
Слайд 33

Третий этап формирования алгоритма

Решите уравнения: 18 = 3y + 3 6x + 10 = 5x + 15 -5n – 16 = 3n 8 – 5n = 10 – 4n 9m – 8 = 6m + 7

Тестовые задания. 1. Решите уравнение: 4,2х + 5 = -7,6 А) 4; Б) -3; В) -0,3; Г) другой ответ. 2. Найдите сумму корней уравнений х + 11,7 = 8,7 и (3х + 4,6) – 6,6 = 8,7 + 2,2 А) 4,3; Б) -7,4; В) 1,3; Г) другой ответ.
Слайд 34

Тестовые задания

1. Решите уравнение: 4,2х + 5 = -7,6 А) 4; Б) -3; В) -0,3; Г) другой ответ. 2. Найдите сумму корней уравнений х + 11,7 = 8,7 и (3х + 4,6) – 6,6 = 8,7 + 2,2 А) 4,3; Б) -7,4; В) 1,3; Г) другой ответ.

3. Отец в два раза старше сына и на 25 лет старше дочери. Сколько лет дочери, если всем вместе им 95 лет? А) 23; Б) 24; В) 48; Г) другой ответ.
Слайд 35

3. Отец в два раза старше сына и на 25 лет старше дочери. Сколько лет дочери, если всем вместе им 95 лет? А) 23; Б) 24; В) 48; Г) другой ответ.

Самостоятельная работа. 1. Решите уравнения: а) 2,1х – 3,5 = 1,4х; б) 2(4 – 1,9х) = 0,8 – 0,2х. 2. На верхней полке в 3 раза больше книг, чем на нижней. После того, как с верхней полки сняли 15 книг, а на нижнюю добавили 11 книг, книг на обеих полках стало поровну. Сколько книг было на каждой полке
Слайд 36

Самостоятельная работа

1. Решите уравнения: а) 2,1х – 3,5 = 1,4х; б) 2(4 – 1,9х) = 0,8 – 0,2х. 2. На верхней полке в 3 раза больше книг, чем на нижней. После того, как с верхней полки сняли 15 книг, а на нижнюю добавили 11 книг, книг на обеих полках стало поровну. Сколько книг было на каждой полке первоначально? 3. Путь из города в село турист прошел со скоростью 4,8 км/ч. На обратном пути он увеличил скорость до 6 км/ч, что позволило ему пройти это расстояние на 1 час быстрее. Найдите расстояние от города до села.

VII класс. 0,5(4 – 2a) = a – 1,8 2 – a = a – 1,8 a + a = 2 + 1,8 2a = 3,8 a = 1,9 Ответ: 1,9
Слайд 37

VII класс

0,5(4 – 2a) = a – 1,8 2 – a = a – 1,8 a + a = 2 + 1,8 2a = 3,8 a = 1,9 Ответ: 1,9

Алгоритм решения линейного уравнения с двумя переменными типа: 5y – 2x = 1. 1) воспользовавшись свойствами уравнений, выразить из данного уравнения одну переменную через другую; 2) воспользовавшись свойствами уравнений, добиться того, чтобы коэффициент при одной из переменных был равен единице; 3) в
Слайд 38

Алгоритм решения линейного уравнения с двумя переменными типа: 5y – 2x = 1

1) воспользовавшись свойствами уравнений, выразить из данного уравнения одну переменную через другую; 2) воспользовавшись свойствами уравнений, добиться того, чтобы коэффициент при одной из переменных был равен единице; 3) взять произвольное значение одной из переменных и вычислить соответствующее ему значение другой переменной; 4) записать решение исходного (данного) уравнения в виде пары (пар) чисел.

3x + 2y = 12 (1) 2y = 12 – 3x y = 6 – 1,5x (2) если x = 2, то = 6 – 3 = 3; если x = 6, то = 6 – 9 = -3. Пары чисел (2; 3), (6;-3) – решение уравнения (1). уравнение (1) имеет бесконечно много решений
Слайд 39

3x + 2y = 12 (1) 2y = 12 – 3x y = 6 – 1,5x (2) если x = 2, то = 6 – 3 = 3; если x = 6, то = 6 – 9 = -3. Пары чисел (2; 3), (6;-3) – решение уравнения (1). уравнение (1) имеет бесконечно много решений

Тестовые задания по теме: «Уравнение с одной переменной». 1. Выберите уравнения, для которых число -3 является корнем: 1) (2x + 3)(2x - 6) = 0; 3) (2x + 6)(x - 4) = 0; 2) (x2 - 9) + (x2 - 7) = 2; 4) (x + 3)(x2 – 3x + 9) = 0. а) 1; 2; б) всех; в) 3; 4; г) 2; 3; 4. 2. Найдите все натуральные значения
Слайд 40

Тестовые задания по теме: «Уравнение с одной переменной»

1. Выберите уравнения, для которых число -3 является корнем: 1) (2x + 3)(2x - 6) = 0; 3) (2x + 6)(x - 4) = 0; 2) (x2 - 9) + (x2 - 7) = 2; 4) (x + 3)(x2 – 3x + 9) = 0. а) 1; 2; б) всех; в) 3; 4; г) 2; 3; 4. 2. Найдите все натуральные значения p, при которых корнем уравнения px = 8 является целое число. а) 1; 2; 4; 8; б) 1; 8; в) 2; 4; г) 2; 4; 8.

Тестовые задания по теме «Уравнения с двумя переменными». 1. При каком значении c пара (c;3) является решением уравнения 3x – 4y = 6? а) -6; б) 6. 2. Точка с абсциссой -3 принадлежит графику уравнения x – 2y = 10. Найдите ординату этой точки. а) -6,5; б) 6,5; в) 4; г) -4.
Слайд 41

Тестовые задания по теме «Уравнения с двумя переменными»

1. При каком значении c пара (c;3) является решением уравнения 3x – 4y = 6? а) -6; б) 6. 2. Точка с абсциссой -3 принадлежит графику уравнения x – 2y = 10. Найдите ординату этой точки. а) -6,5; б) 6,5; в) 4; г) -4.

1. Решите уравнения: а) -8х = -24; б) 50х = -5; в) -18х = 1. 2. Определите значение x, при котором значение выражения -3х равно: а) 0; б) 6; в) -12; 3. При каких значениях a уравнение ax = 8: 1) имеет корень, равный -4, 0; 2) не имеет корней; 3) имеет отрицательный корень?
Слайд 42

1. Решите уравнения: а) -8х = -24; б) 50х = -5; в) -18х = 1. 2. Определите значение x, при котором значение выражения -3х равно: а) 0; б) 6; в) -12; 3. При каких значениях a уравнение ax = 8: 1) имеет корень, равный -4, 0; 2) не имеет корней; 3) имеет отрицательный корень?

Методические рекомендации по организации работы учащихся с алгоритмами и формированию алгоритмического мышления. алгоритм должен быть по возможности наиболее кратким; «Читая и применяя алгоритм, старайтесь запоминать его»; пунктуационное соблюдение данного учителем образца решения задачи; указания в
Слайд 43

Методические рекомендации по организации работы учащихся с алгоритмами и формированию алгоритмического мышления.

алгоритм должен быть по возможности наиболее кратким; «Читая и применяя алгоритм, старайтесь запоминать его»; пунктуационное соблюдение данного учителем образца решения задачи; указания в алгоритме желательно давать в таком виде, чтобы они содержали в себе все необходимые объяснения, какие учитель хочет слышать от учащихся по ходу решения задач.

Список похожих презентаций

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
Активные формы и методы обучения школьников

Активные формы и методы обучения школьников

Ф о р м ы р а б о т ы. индивидуальные парные групповые коллективные. Основные формы проведения факультативных занятий. Лекция Семинар Дискуссия Решение ...
В мире квадратных уравнений

В мире квадратных уравнений

Оглавление. Введение Заметки прошлого Основные понятия Теорема Виета Способы решения квадратного уравнения. Математика — основа точных наук. На первый ...
Активизация мыслительной деятельности на уроках математики

Активизация мыслительной деятельности на уроках математики

Активные формы урока. Урок-лекция. Урок-консультация. Урок-практикум Урок-семинар Урок-зачёт. урок-лекция. Зачёт №2 по геометрии в 11 классе 1.Объясните, ...
Бинарный урок математики и природоведения по теме "Итоговое повторение"

Бинарный урок математики и природоведения по теме "Итоговое повторение"

Итоговое повторение. Ну-ка, проверь дружок, Ты готов начать урок? Всё ль на месте, Всё ль в порядке, Ручка, книжка и тетрадка? Все ли правильно сидят? ...
«Математика» – новый учебник математики

«Математика» – новый учебник математики

«Математика» – новый учебник математики. Образовательная система «Школа 2100». Цель Принципы Технология. Авторы Образовательной системы Школа 2100. ...
Авторалли по городам математики

Авторалли по городам математики

Цель: Закрепить навык выполнения действий, возведения чисел в квадрат и куб, закрепить формулы пути и площади. Расширение кругозора учащихся, развитие ...
Аналитический и численный методы решения систем уравнений с параметром

Аналитический и численный методы решения систем уравнений с параметром

АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ПАРАМЕТРОМ. Астрахарчик Н.А. Система симметрична относительно знака x. Система симметрична ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
Аналитические методы решения логарифмических уравнений

Аналитические методы решения логарифмических уравнений

Цели урока:. Обобщить и систематизировать изученные методы решения логарифмических уравнений Выявить особенности каждого метода Выяснить, всегда ли ...
Апробация инструментария диагностических исследований профессиональной компетентности учителей начальных классов по математике

Апробация инструментария диагностических исследований профессиональной компетентности учителей начальных классов по математике

Проводится в соответствии приказом управления образования и науки области от 18.03.2010 №841 «О проведении апробации инструментария диагностического ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
8 класс "Решение квадратных уравнений"

8 класс "Решение квадратных уравнений"

. . . . . . «Уравнение – это золотой ключ, открывающий все математические тайны». . Цель: привести в систему знания о квадратных уравнениях и умение ...
10 способов решения квадратных уравнений

10 способов решения квадратных уравнений

История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне: Х2+Х=3/4 Х2-Х=14,5. Как составлял и решал Диофант квадратные уравнения. ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Бумажные складные модели и их использование на уроках геометрии в 10 классе

Бумажные складные модели и их использование на уроках геометрии в 10 классе

Модель 1 – «Две пересекающиеся плоскости». Согнутый пополам лист бумаги служит моделью двух пересекающихся плоскостей. Линия сгиба – прямая их пересечения. ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...

Конспекты

Великие математики России. С.В. Ковалевская

Великие математики России. С.В. Ковалевская

План-конспект внеклассного мероприятия. «Великие математики России. С.В. Ковалевская». . ФИО. . Ракитина Эльвира Альбертовна. . ...
Виды уравнений. Методы решения уравнений

Виды уравнений. Методы решения уравнений

ГАОУ НПО Профессиональный лицей № 59. Оренбургская область, Красногвардейский район, с. Плешаново. Виды уравнений. Методы решения уравнений. ...
В стране математики

В стране математики

. . Муниципальное казенное дошкольное образовательное учреждение. «Детский сад компенсирующего вида №7 «Сказка». . . Конспект урока. ...
Великие математики

Великие математики

МБОУ Уджейская ООШ. общешкольный классный час. по теме:. «ВЕЛИКИЕ МАТЕМАТИКИ». Подготовила материал и. . провела –. В.А. Овчинникова. ...
В стране математики

В стране математики

Муниципальное образовательное учреждение. «Моркинская средняя (полная) общеобразовательная школа№2». Республики Марий Эл. План – конспект. ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
В стране математики

В стране математики

. . Муниципальное казенное дошкольное образовательное учреждение. «Детский сад компенсирующего вида №7 «Сказка». . . Конспект урока ...
Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Математика
Классы:
Содержит:43 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации