- Применение свойств квадратичной функции

Презентация "Применение свойств квадратичной функции" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9

Презентацию на тему "Применение свойств квадратичной функции" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 9 слайд(ов).

Слайды презентации

Применение свойств квадратичной функции. Алексеевский Сергей МБОУ «СОШ № 2 ст. Архонская»
Слайд 1

Применение свойств квадратичной функции

Алексеевский Сергей МБОУ «СОШ № 2 ст. Архонская»

Задачи на определение числа корней квадратного уравнения. П р и м е р 1. Имеет ли корни уравнение 1716х2 – 5321х + 3248 = 0? Решение. D = 53212 – 4 · 1716 · 3248 > 5000 · 5000 – – 4 · 1750 · 3250 = 5000 · 5000 – 2 · 1750 · 2 · 3250 = = 25 000 000 – 3500 · 6500 = = 25 000 000 – 22 750 000 > 0.
Слайд 2

Задачи на определение числа корней квадратного уравнения.

П р и м е р 1. Имеет ли корни уравнение 1716х2 – 5321х + 3248 = 0? Решение. D = 53212 – 4 · 1716 · 3248 > 5000 · 5000 – – 4 · 1750 · 3250 = 5000 · 5000 – 2 · 1750 · 2 · 3250 = = 25 000 000 – 3500 · 6500 = = 25 000 000 – 22 750 000 > 0. Так как дискриминант положителен, то уравнение имеет два корня.

Рассмотрим функцию f(х) = 1716х2 – 5321х + 3248. Пусть х = 1, тогда f(х) = 1716 – 5321 + 3248

П р и м е р 2. Сколько корней имеет уравнение (х – 100)(х – 101) + (х – 101)(х – 102) + (х – 102)(х – 100) = 0? Решение. Раскроем скобки в левой части и представим её в виде квадратного трехчлена с положительным коэффициентом при х2. Обозначим этот трехчлен через f(х). Найдем f(101): f(101) = 0 + 0
Слайд 3

П р и м е р 2. Сколько корней имеет уравнение (х – 100)(х – 101) + (х – 101)(х – 102) + (х – 102)(х – 100) = 0? Решение. Раскроем скобки в левой части и представим её в виде квадратного трехчлена с положительным коэффициентом при х2. Обозначим этот трехчлен через f(х). Найдем f(101): f(101) = 0 + 0 – 1

Примеры на определение местонахождения корней квадратного уравнения на числовой прямой. П р и м е р 3. Докажем, что один из корней уравнения 52х2 – 70х + 15 = 0 больше 1, а другой меньше 1. Решение. Докажем, что число 1 лежит между корнями данного уравнения. Возьмем функцию f(х) = 52х2 – 70х + 15 и
Слайд 4

Примеры на определение местонахождения корней квадратного уравнения на числовой прямой.

П р и м е р 3. Докажем, что один из корней уравнения 52х2 – 70х + 15 = 0 больше 1, а другой меньше 1. Решение. Докажем, что число 1 лежит между корнями данного уравнения. Возьмем функцию f(х) = 52х2 – 70х + 15 и найдем f(1): f(1) = 52 – 70 + 15

П р и м е р 4. Установить, как на координатной оси расположены числа: а) х1, х2, 0, 1, если х1 и х2 – корни квадратного трёхчлена f(х) = 10х2 – 18х – 17 и х1
Слайд 5

П р и м е р 4. Установить, как на координатной оси расположены числа: а) х1, х2, 0, 1, если х1 и х2 – корни квадратного трёхчлена f(х) = 10х2 – 18х – 17 и х1

П р и м е р 4. Установить, как на координатной оси расположены числа: б) х1, х2, – 10, – 1, если х1, х2 – корни квадратного трёхчлена f(х) = – 12х2 – 23х + 27 и х1
Слайд 6

П р и м е р 4. Установить, как на координатной оси расположены числа: б) х1, х2, – 10, – 1, если х1, х2 – корни квадратного трёхчлена f(х) = – 12х2 – 23х + 27 и х1

Решение физических задач с применением свойств квадратичной функции. П р и м е р 5. Мяч подброшен вертикально вверх. Зависимость высоты мяча над землей h (м) от времени полета t (с) выражается формулой h = – 5t2 + 10t + 1,5. На какую максимальную высоту поднимется мяч? Р е ш е н и е. Траектория полё
Слайд 7

Решение физических задач с применением свойств квадратичной функции.

П р и м е р 5. Мяч подброшен вертикально вверх. Зависимость высоты мяча над землей h (м) от времени полета t (с) выражается формулой h = – 5t2 + 10t + 1,5. На какую максимальную высоту поднимется мяч? Р е ш е н и е. Траектория полёта представляет собой параболу, ветви которой направлены вниз, своего наибольшего значения она достигнет в вершине параболы, т. е. решение задачи свелось к нахождению координат вершины параболы: t = (с), h = – 5 + 10 + 1,5 = 6,5 (м). О т в е т: 6,5 метра.

П р и м е р 6. Камень брошен вертикально вверх. Пока камень не упал, высота, на которой он находится, описывается формулой h(t) = – 5t2 + 39t, где h — высота в метрах, t — время в секундах, прошедшее с момента броска. Найдите, сколько секунд камень находился на высоте не менее 28 м. Р е ш е н и е: Р
Слайд 8

П р и м е р 6. Камень брошен вертикально вверх. Пока камень не упал, высота, на которой он находится, описывается формулой h(t) = – 5t2 + 39t, где h — высота в метрах, t — время в секундах, прошедшее с момента броска. Найдите, сколько секунд камень находился на высоте не менее 28 м. Р е ш е н и е: Решим неравенство: – 5t2 + 39t ≥ 28, 5t2 + 39t – 28 ≤ 0, D = 961, t1 = 0,8, t2 = 7. На высоте не менее 28 метров, камень находился 7 – 0,8 = 6,2 секунды. О т в е т: 6,2 с.

П р и м е р 7. Брандспойт, закреплённый под определённым углом на пожарной машине, выстреливает струю воды с постоянной начальной скоростью. Высота струи воды описывается формулой у = ах2 + bх + с, где постоянные параметры. На каком максимальном расстоянии в метрах от забора нужно поставить машину,
Слайд 9

П р и м е р 7. Брандспойт, закреплённый под определённым углом на пожарной машине, выстреливает струю воды с постоянной начальной скоростью. Высота струи воды описывается формулой у = ах2 + bх + с, где постоянные параметры. На каком максимальном расстоянии в метрах от забора нужно поставить машину, чтобы вода перелетала через верх? Высота забора равна 19 м. Решение. Рассуждая аналогично, составим неравенство и решим его: – х2 + 180х + 630 ≥ 5130, х2 – 180х + 4500 ≤ 0, (х – 30)(х – 150) ≤ 0, 30 ≤ х ≤ 150. Наибольшее расстояние равно 150 метров. О т в е т: 150 м.

Список похожих презентаций

Алгоритм построения графика квадратичной функции

Алгоритм построения графика квадратичной функции

1)направление «ветвей» параболы. если а>0, то «ветви» параболы направлены вверх; если а 0 - «ветви» параболы направлены вверх;. 2)Нахождение координат ...
Преобразование графика квадратичной функции

Преобразование графика квадратичной функции

Проверка результатов исследований. 1 группа (y=x2+c) y=x2+3;. С=3 – сдвиг вверх по оси ординат на 3. 2 группа (y=x2+c) y=x2-5;. С=-5 – сдвиг вниз ...
Преобразования графиков квадратичной функции

Преобразования графиков квадратичной функции

Квадратичной функцией называется функция вида у = ax²±bx±c Например : у=2x²+3x-4, а=2, b=3,c=-4 Графиком квадратичной функции является парабола Для ...
Графики квадратичной функции

Графики квадратичной функции

y x 0. График функции y = a x ,. при a=1 при a= -1 1 2 3 4 5 6 -6 -5-4-3-2-1 1 4 9 -9 -4. Преобразование графика квадратичной функции. Построение ...
Построение графика квадратичной функции

Построение графика квадратичной функции

Цели:. Формирование у учащихся умения строить график квадратичной функции в соответствии со схемой. определение. Квадратичной функцией называется ...
Отражение свойств функции в пословицах и поговорках

Отражение свойств функции в пословицах и поговорках

Цель урока: Изобразить графически как некоторую функцию пословицу и описать свойства функции-пословицы. Возрастающая функция. Функция y=f(x) называется ...
Построение графика квадратичной функции

Построение графика квадратичной функции

Сдвиг графика функции y = ax2 вдоль оси y. y = x2 y = x2+1 x y. -2 1 0 y = x2 – 2. Сдвиг графика функции y = ax2 вдоль оси x. -3 y = (x+3)2. 2 y = ...
График квадратичной функции Неравенства с одной переменной

График квадратичной функции Неравенства с одной переменной

Квадратичная функция и ее график. Квадратичной функцией называется функция, которую можно задать формулой вида y = ax² + bx + c, где х – независимая ...
График квадратичной функции. Неравенства с одной переменной

График квадратичной функции. Неравенства с одной переменной

Квадратичная функция и ее график. Квадратичной функцией называется функция, которую можно задать формулой вида y = ax² + bx + c, где х – независимая ...
Построение графика линейной функции вида у= kx + b

Построение графика линейной функции вида у= kx + b

у = - 2х + 3 – линейная функция. Графиком линейной функции является прямая, для построения прямой нужно иметь две точки. х – независимая переменная, ...
Понятие функции

Понятие функции

Содержание:. что такое функция история создания названия функции аналитический способ задания функции табличный способ задания функции способ описания ...
Взаимное расположение графиков линейной функции

Взаимное расположение графиков линейной функции

Разбейте функции, заданные формулами, на группы:. у = 2х - 3; у = х2 - 3; у = - 5х; у = 4 - 0,5х; у = - х +2; у=15х;. 7. 8. 9. 10. у = х (1 - х). ...
Определение производной от функции

Определение производной от функции

Определение производной функции (Содержание). Геометрический смысл отношения Геометрический смысл отношения при Геометрический смысл производной функции ...
Обратные тригонометрические функции

Обратные тригонометрические функции

Историческая справка. Тригонометрические функции возникли впервые в связи с исследованиями в астрономии и геометрии. Соотношения отрезков в треугольнике ...
Непрерывность функции

Непрерывность функции

Определение: Функция называется непрерывной в точке , если: функция определена в точке и ее окрестности; существует конечный предел функции в точке ...
Логарифмы. Применение логарифмов

Логарифмы. Применение логарифмов

повторить определение логарифма; закрепить основные свойства логарифмов; - способствовать формированию умения применять свойства логарифмов при упрощении ...
Вычисление производной функции

Вычисление производной функции

При вычислении производной функции, будем иметь в виду, что один из способов найти производную - это взять достаточно малые значения справа и слева ...
Геометрический смысл производной функции

Геометрический смысл производной функции

Рано или поздно всякая правильная математическая идея находит применение в том или ином деле. А.Н.Крылов. Цель урока. 1) выяснить, в чем состоит геометрический ...
Выделение элементов и свойств геометрических фигур

Выделение элементов и свойств геометрических фигур

Геометрические фигуры являются эталонами, пользуясь которыми человек определяет форму предметов и их частей. Проблему знакомства детей с геометрическими ...
Возрастание и убывание функции

Возрастание и убывание функции

Числовые промежутки. [α;b] – отрезок (α;b) – интервал (α;b] – полуинтервал [α;b) - полуинтервал. Функция f(x) называется возрастающей на некотором ...

Конспекты

Применение параллельного переноса при построении квадратичной функции

Применение параллельного переноса при построении квадратичной функции

Урок по теме. : «Применение параллельного переноса при построении квадратичной функции». Тип урок. а: урок повторения. Цель урока:. Повторить ...
Применение производной к исследованию свойств функции и к решению прикладных задач

Применение производной к исследованию свойств функции и к решению прикладных задач

Конспект урока алгебры для учащихся 10 класса. Тема урока:. Применение производной к исследованию свойств функции и к решению прикладных задач. ...
Применение свойств рациональных чисел для рационализации вычислений

Применение свойств рациональных чисел для рационализации вычислений

Тема: Применение свойств рациональных чисел для рационализации вычислений. Тип урока:. Формирование умений и навыков. Цели урока:. Обучающие:. ...
Производная. Геометрический смысл производной. Применение производной к исследованию функции. Задачи В-8

Производная. Геометрический смысл производной. Применение производной к исследованию функции. Задачи В-8

Государственное общеобразовательное учреждение. Гимназия №205. Урок по теме. « Производная. Геометрический смысл производной. Применение ...
Применение свойства монотонности функций при решении уравнений и неравенств

Применение свойства монотонности функций при решении уравнений и неравенств

Тамбовское областное государственное автономное образовательное учреждение – общеобразовательная школа – интернат. . «Мичуринский лицей». ...
Применение свойств арифметического квадратного корня

Применение свойств арифметического квадратного корня

Урок математики по теме: "Применение свойств арифметического квадратного корня" (8-й класс). . Аксютченко. . Жанна Владимировна,. учитель математики. ...
Применение свойств квадратных корней

Применение свойств квадратных корней

Урок по алгебре в 8 классе. Учитель:. Патрина Татьяна Николаевна, МОУ СОШ №120 с углубленным изучением отдельных предметов Московского района города ...
Применение свойств квадратного корня

Применение свойств квадратного корня

План- конспект урока. Применение свойств квадратного корня. (Тема урока). . ФИО (полностью):. . Старикова Валентина Валерьевна. . ...
График квадратичной функции и модуль

График квадратичной функции и модуль

Администрация города Улан - Удэ. Комитет по образованию. МАОУ «Средняя общеобразовательная школа № 25». Урок алгебры в 9 классе. ...
Применение свойств арифметического квадратного корня

Применение свойств арифметического квадратного корня

ПЛАН-КОНСПЕКТ УРОКА «Применение свойств арифметического квадратного корня». . ФИО (полностью). . . Рыжова Наталья Михайловна. . ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:1 мая 2019
Категория:Математика
Содержит:9 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации