- Золотое сечение и применение золотого сечения в жизни

Презентация "Золотое сечение и применение золотого сечения в жизни" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19

Презентацию на тему "Золотое сечение и применение золотого сечения в жизни" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 19 слайд(ов).

Слайды презентации

Презентация . На тему: «Золотое сечение и применение золотого сечения в жизни. Автор работы: Полянских Александр ученик 10 «б» класса. С.Сюмси. СОШ. 2008г.
Слайд 1

Презентация . На тему: «Золотое сечение и применение золотого сечения в жизни.

Автор работы: Полянских Александр ученик 10 «б» класса. С.Сюмси. СОШ. 2008г.

Цель работы: 1.Изучить тему «золотая пропорция». 2.Рассмотреть связанные с нею отношения. 3.Познакомиться с «золотой пропорцией» в природе
Слайд 2

Цель работы:

1.Изучить тему «золотая пропорция». 2.Рассмотреть связанные с нею отношения. 3.Познакомиться с «золотой пропорцией» в природе

Методы изучения: 1.Знакомство с литературой в которой описывается золотое сечение. 2.Изучение разнообразия применения золотого сечения, путем рассматривания объектов реальной действительности.
Слайд 3

Методы изучения:

1.Знакомство с литературой в которой описывается золотое сечение. 2.Изучение разнообразия применения золотого сечения, путем рассматривания объектов реальной действительности.

Введение. «…Геометрия владеет двумя сокровищами- теоремой Пифагора и золотым сечением, и если первое из них можно сравнить с мерой золота, то второе с драгоценным камнем…» Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть вызван жизненной необходимос
Слайд 4

Введение.

«…Геометрия владеет двумя сокровищами- теоремой Пифагора и золотым сечением, и если первое из них можно сравнить с мерой золота, то второе с драгоценным камнем…» Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть вызван жизненной необходимостью, а может быть вызван красотой формы. Форма в основе которой лежат сочетание симметрии и золотого сечения , способствуют наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из двух частей, части равной величины находятся в равном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального целого и его частей в искусстве, науке, технике и природе.

Золотое сечение. Ещё в эпоху Возрождения художники открыли ,что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом не важно какой формат имеет картина- горизонтальный или вертикальный. Таких точек всего четыре и расположены они на
Слайд 5

Золотое сечение.

Ещё в эпоху Возрождения художники открыли ,что любая картина имеет определенные точки, невольно приковывающие наше внимание, так называемые зрительные центры. При этом не важно какой формат имеет картина- горизонтальный или вертикальный. Таких точек всего четыре и расположены они на расстоянии 3/8 и 5/8 от соответствующих краев плоскости. Данное открытие у художников того времени получило название «Золотое сечение» картины. Поэтому чтобы привлечь внимание к главному элементу картины, необходимо совместить этот элемент со зрительным центром. В математике пропорцией называют равенство двух отношений a : b= c: d . Отрезок прямой AB можно разделить на две равные части следующим образом- AB : AC=AB : BC на две неравные части в любом отношении. Таким образом последнее отношение это и есть золотое деление отрезка в крайнем и среднем отношении.

Золотое сечение- такое пропорциональное деление отрезка на равные части, при котором весь отрезок так относиться к большей части как самая большая часть относиться к меньшей или меньший отрезок так относиться, как больший ко всему a : b = b : c или c : b = b : a
Слайд 6

Золотое сечение- такое пропорциональное деление отрезка на равные части, при котором весь отрезок так относиться к большей части как самая большая часть относиться к меньшей или меньший отрезок так относиться, как больший ко всему a : b = b : c или c : b = b : a

Чему же равно золотое сечение? Если высоту картины взять за 1 ,а расстояние от верхнего края до линии горизонта обозначить за x то по условию золотого сечения (отношение высоты картины к расстоянию от верхнего края до линии горизонта равно отношению расстояния от верхнего края до горизонта к расстоя
Слайд 7

Чему же равно золотое сечение? Если высоту картины взять за 1 ,а расстояние от верхнего края до линии горизонта обозначить за x то по условию золотого сечения (отношение высоты картины к расстоянию от верхнего края до линии горизонта равно отношению расстояния от верхнего края до горизонта к расстоянию от линии горизонта до нижнего края) получаем 1 : x = x : ( 1 : x ) , преобразовав это уравнение получаем что x = 0,62 (или часто это число обозначают буквой φ).

Золотое сечение в живописи. После того как мы рассмотрели что такое золотое сечение то теперь рассмотрим где же оно применяется в жизни. На знаменитой картине И.И.Шишкина «Сосновая роща» с очевидностью просматриваются мотивы золотого сечения. Ярко освященная солнцем сосна (стоящая на первом плане) д
Слайд 8

Золотое сечение в живописи.

После того как мы рассмотрели что такое золотое сечение то теперь рассмотрим где же оно применяется в жизни. На знаменитой картине И.И.Шишкина «Сосновая роща» с очевидностью просматриваются мотивы золотого сечения. Ярко освященная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны освященный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали . Слева от сосны находиться множество сосен- при желании можно с успехом продолжать деление картины по золотому сечению и дальше.

Золотые пропорции в строении молекулы ДНК. Все сведения о физиологических особенностях живых существ хранятся в микроскопической молекуле ДНК, строение которой так же содержит в себе закон золотой пропорции. Молекула ДНК состоит из двух вертикально переплетенных между собой спиралей. Длина каждой со
Слайд 9

Золотые пропорции в строении молекулы ДНК.

Все сведения о физиологических особенностях живых существ хранятся в микроскопической молекуле ДНК, строение которой так же содержит в себе закон золотой пропорции. Молекула ДНК состоит из двух вертикально переплетенных между собой спиралей. Длина каждой составляет 34 ангстрема , ширина 21 ангстрем (1 ангстрем- одна стомиллионная доля сантиметра). Так вот 21 и 34- цифры, следующие друг за другом в последовательности Фибоначчи, то есть соотношение длины и ширины логарифмической спирали молекулы ДНК несет в себе формулу золотого сечения 1:1,618. Золотое сечение в строении растений. Рассмотрим расположение семечек в корзине подсолнуха. Они выстраиваются вдоль спиралей которые закручиваются как слева на право так и справа налево .В одну сторону у среднего подсолнуха закручено 13 спиралей , а в другую -21.Отношение 13/21=0,62. Похожее спиральное расположение наблюдается у чешуек сосновых шишек или ячеек ананаса. По золотой спирали свёрнуты раковины многих улиток и моллюсков, некоторые пауки закручивают паутину по золотым спиралям. Рога архаров закручены по золотым спиралям.

Золотое сечение в строении снежинок. Золотое сечение присутствует в строении всех кристаллов, но большинство кристаллов, микроскопически малы, так что мы не можем разглядеть их невооруженным глазом. Однако снежинки, так же представляющие собой водные кристаллы, вполне доступные нашему взору. Все изы
Слайд 10

Золотое сечение в строении снежинок.

Золотое сечение присутствует в строении всех кристаллов, но большинство кристаллов, микроскопически малы, так что мы не можем разглядеть их невооруженным глазом. Однако снежинки, так же представляющие собой водные кристаллы, вполне доступные нашему взору. Все изысканной красоты фигуры , которые образуют снежинки, все оси, окружности и геометрические фигуры в снежинках так же всегда построены по совершенной формуле золотого сечения. Золотые пропорции в космическом пространстве Во Вселенной все известные человечеству галактики и все тела которые в них существуют в виде спирали, соответствуют формуле золотого сечения.

Золотой треугольник. На уроках геометрии мы изучали равнобедренный треугольник, равносторонний треугольник , оказывается еще существует так называемый треугольник. Золотым называется такой равнобедренный треугольник , основание и боковая сторона которого находятся в золотом отношении. AC/AB=0,62. B
Слайд 11

Золотой треугольник.

На уроках геометрии мы изучали равнобедренный треугольник, равносторонний треугольник , оказывается еще существует так называемый треугольник. Золотым называется такой равнобедренный треугольник , основание и боковая сторона которого находятся в золотом отношении. AC/AB=0,62.

B A C

Золотой прямоугольник. Прямоугольник стороны которого находятся в золотом отношении т.е. отношение длины к ширине даёт число 0,62; называется золотым прямоугольником. KL/KN=0,62. L M K N
Слайд 12

Золотой прямоугольник

Прямоугольник стороны которого находятся в золотом отношении т.е. отношение длины к ширине даёт число 0,62; называется золотым прямоугольником. KL/KN=0,62

L M K N

Золотое сечение в растительном мире. Одним из первых проявлений золотого сечения в природе подметил разносторонний наблюдатель Иоганн Кеплер (1571-1630 ). Приведем один из сравнительно недавних установленных фактов. В 1850 г. Немецкий ученый А.Цейзинг открыл так называемый закон углов, согласно кото
Слайд 13

Золотое сечение в растительном мире.

Одним из первых проявлений золотого сечения в природе подметил разносторонний наблюдатель Иоганн Кеплер (1571-1630 ). Приведем один из сравнительно недавних установленных фактов. В 1850 г. Немецкий ученый А.Цейзинг открыл так называемый закон углов, согласно которому средняя величина углового отклонения ветки растения равна примерно 138° Представим себе что две соседние ветки растения исходят из одной точки( на самом деле это не так: в реальности ветки располагаются выше или ниже друг друга). Обозначим одну из них через OA , другую через OB. Угол между лучами ветки обозначим через α, а другой дополняющий его до 360°,- через β.Составим золотую пропорцию деления полного угла, считая что β- большая часть вершины : 360/β=β/360-β.

После преобразования получаем что β=222,48° α=360°-222,48°=138° Таким образом величина среднего углового отклонения ветки соответствует меньшей из двух частей, на которые делится полный угол при золотом сечении, т.е. α/β=φ или 0,62
Слайд 14

После преобразования получаем что β=222,48° α=360°-222,48°=138° Таким образом величина среднего углового отклонения ветки соответствует меньшей из двух частей, на которые делится полный угол при золотом сечении, т.е. α/β=φ или 0,62

Пентаграмма. Замечательный пример «золотого сечения» представляет пентаграмма- правильный невыпуклый пятиугольник , она же правильный звездчатый пятиугольник, или правильная пятиугольная звезда она известна узнаваема и известна нам с детства. Форму пятиконечной звезды имеют многие морские цветы, мор
Слайд 15

Пентаграмма.

Замечательный пример «золотого сечения» представляет пентаграмма- правильный невыпуклый пятиугольник , она же правильный звездчатый пятиугольник, или правильная пятиугольная звезда она известна узнаваема и известна нам с детства. Форму пятиконечной звезды имеют многие морские цветы, морские звезды, и ежи, вирусы, и т.д.Человеческое тело можно рассматривать как пятилучевую фигуру, где лучами служат голова, руки и ноги. Первые упоминания о пентаграмме относятся к Древней Греции. В переводе с греческого пентаграмма означает пять линий. В эллинском мире наука и искусство развивались в так называемых философских школах. Одной из самых интересных была школа Пифагора, а отличительным знаком её членов была пентаграмма. Конечно пифагорейцы не зря выбрали пентаграмму. Они считали, что этот многоугольник обладает многими мистическими свойствами.

Чем интересен этот символ с точки зрения математики? Пентаграмма представляет собой вместилище золотых пропорций! Из подобия треугольников ACD и ABE можно вывести известную пропорцию AB/AC=AC/BC. Интересно что внутри пятиугольника можно строить пятиугольники, и золотые отношения будут сохраняться.
Слайд 16

Чем интересен этот символ с точки зрения математики? Пентаграмма представляет собой вместилище золотых пропорций! Из подобия треугольников ACD и ABE можно вывести известную пропорцию AB/AC=AC/BC. Интересно что внутри пятиугольника можно строить пятиугольники, и золотые отношения будут сохраняться.

Золотое сечение в пропорциях человеческого тела. Человек- венец творения природы... Установлено что золотые отношения можно можно найти в пропорциях человеческого тела. Оказывается что у большинства людей, верхняя точка уха на рисунке – это точка B, делит высоту головы вместе с шеей , т.е. отрезок A
Слайд 17

Золотое сечение в пропорциях человеческого тела.

Человек- венец творения природы... Установлено что золотые отношения можно можно найти в пропорциях человеческого тела. Оказывается что у большинства людей, верхняя точка уха на рисунке – это точка B, делит высоту головы вместе с шеей , т.е. отрезок AC, в золотом отношении. Нижняя точка уха, точка D,делит в золотом отношении расстояние BC, т.е. расстояние от верхней части уха до основания шеи. Подбородок делит расстояние от нижней точки уха до основания шеи в золотом отношении, т.е. точка E делит в золотом отношении отрезок DC.

Золотое сечение в строении Земли. В красивом (гармоничном) сочетании звуков заложена «золотая» пропорция(звукоряд Пифагора). По закону золотого сечения построена Солнечная система. Пятиконечную симметрию имеет планета Земля, кора которой выложена из пятиугольных плит. Есть основание думать что, весь
Слайд 18

Золотое сечение в строении Земли.

В красивом (гармоничном) сочетании звуков заложена «золотая» пропорция(звукоряд Пифагора). По закону золотого сечения построена Солнечная система. Пятиконечную симметрию имеет планета Земля, кора которой выложена из пятиугольных плит. Есть основание думать что, весь мир построен по принципу золотой пропорции. В этом смысле Вселенная в целом является грандиозным живы организмом, подобие с которым дает на право самими называться живыми организмами.

Литература. 1.Энциклопедичкский словарь юного математика- М.: Педагогика,1989 г. 2 Я познаю мир: Детская энциклопедия: Математика.- М.: АСТ 1997 г. 3. Депман, И.Я.Виленкин, За страницами учебника математики- М.: Просвещение,1989 г. 4. Васютинский,Н.Н. Золотая пропорция.- М.: Молода гвардия, 1990 г.
Слайд 19

Литература

1.Энциклопедичкский словарь юного математика- М.: Педагогика,1989 г. 2 Я познаю мир: Детская энциклопедия: Математика.- М.: АСТ 1997 г. 3. Депман, И.Я.Виленкин, За страницами учебника математики- М.: Просвещение,1989 г. 4. Васютинский,Н.Н. Золотая пропорция.- М.: Молода гвардия, 1990 г. 5. Информация из интернета.

Список похожих презентаций

"Золотое сечение".

"Золотое сечение".

Золотое сечение. божественная золотая золотое сечение золотая середина золотое деление золотое число. Золотым сечением называют деление отрезка, при ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
«Правильные и неправильные дроби»

«Правильные и неправильные дроби»

«Учёные Грузии нашли золото в составе крови человека». Из журнальной статьи. “ЗОЛОТАЯ КРОВЬ” (ЭДУАРД АСАДОВ). Не так давно учёные открыли Пусть небольшой, ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
I Функция У=АХ², её график и свойства

I Функция У=АХ², её график и свойства

А=1 У=Х ². А=2 У=2Х ². У=Х² У=2Х². Растяжение от оси Х в два раза. А=0.5 У=Х² У=0.5Х². Сжатие по оси Х в два раза. Вообще график функции У=АХ² можно ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...

Конспекты

I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Веселая и полезная математика

Веселая и полезная математика

. Тюрина Валентина Викторовна. 1 квалификационная категория – учитель математики. Город Прокопьевск Кемеровская область. МКОУ «Школа – интернат ...
Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов. . КАЗАХСТАН. ЮЖНО-КАЗАХСТАНСКАЯ ОБЛАСТЬ. Г.ШЫМКЕНТ, ОСНОВНАЯ СРЕДНЯЯ ШКОЛА №97. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...
Вероятность и математическая статистика

Вероятность и математическая статистика

Открытый урок. . по учебной дисциплине Теория вероятностей и математическая статистика. Тема: «Вероятность и математическая статистика». Группа ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Арифметический квадратный корень из произведения, степени и дроби

Арифметический квадратный корень из произведения, степени и дроби

Тема: «Арифметический квадратный корень из произведения, степени и дроби». Цели урока:. . Образовательные:. изучить основные свойства квадратных ...
Верно и неверно

Верно и неверно

МБОУ Чымнайская средняя общеобразовательная школа имени Г.Д.Бястинова. Таттинского улуса республики Саха(Якутия). Варламова Татьяна Спиридоновна- ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:6 февраля 2019
Категория:Математика
Содержит:19 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации