- Задания на производную

Презентация "Задания на производную" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30

Презентацию на тему "Задания на производную" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 30 слайд(ов).

Слайды презентации

Задачи, приводящие к понятию производной.
Слайд 1

Задачи, приводящие к понятию производной.

В начале было слово. К понятию производной можно прийти, рассматривая, например, такое широко используемое в физике понятие, как мгновенная скорость неравномерно движущегося тела. Мы познакомились с этим понятием, изучая в курсе физики раздел кинематики, а точнее кинематики прямолинейного неравномер
Слайд 2

В начале было слово.

К понятию производной можно прийти, рассматривая, например, такое широко используемое в физике понятие, как мгновенная скорость неравномерно движущегося тела. Мы познакомились с этим понятием, изучая в курсе физики раздел кинематики, а точнее кинематики прямолинейного неравномерного движения.

Совершенно верно. Как же Вы представляете себе мгновенную скорость? Что это такое? Мгновенной скоростью тела называют скорость, которую оно имеет в данный момент времени (в данной точке траектории)
Слайд 3

Совершенно верно. Как же Вы представляете себе мгновенную скорость? Что это такое? Мгновенной скоростью тела называют скорость, которую оно имеет в данный момент времени (в данной точке траектории)

А как Вы представляете себе мгновенную скорость? Так и представляю… Если тело движется равномерно, то в разные моменты времени его скорость одинакова. Если тело движется неравномерно (ускоряясь или замедляясь, то в разные моменты времени его скорость будет, вообще говоря, различной
Слайд 4

А как Вы представляете себе мгновенную скорость? Так и представляю… Если тело движется равномерно, то в разные моменты времени его скорость одинакова. Если тело движется неравномерно (ускоряясь или замедляясь, то в разные моменты времени его скорость будет, вообще говоря, различной

Разве Вы не чувствуете, что фраза «скорость в данный момент времени» не более как синоним фразы «мгновенная скорость»? Как говорится, «что в лоб, что по лбу». Термин «скорость в данный момент времени нуждается в разъяснении в той же мере, в какой нуждается в нём термин «мгновенная скорость». Физик э
Слайд 5

Разве Вы не чувствуете, что фраза «скорость в данный момент времени» не более как синоним фразы «мгновенная скорость»? Как говорится, «что в лоб, что по лбу». Термин «скорость в данный момент времени нуждается в разъяснении в той же мере, в какой нуждается в нём термин «мгновенная скорость». Физик эту проблему решает просто. У него есть приборы, например, спидометр. А математик создаст математическую модель процесса. Итак, проблема поставлена. Приступим к её решению.

Остановись мгновенье – мы тебя исследуем ! Сначала мы определили «территорию» своих исследований. В каких ещё науках математика поможет решить подобную проблему ? Оказалось, что связь между количественными характеристиками самых различных процессов, исследуемых физикой, химией, биологией, экономикой
Слайд 6

Остановись мгновенье – мы тебя исследуем ! Сначала мы определили «территорию» своих исследований. В каких ещё науках математика поможет решить подобную проблему ? Оказалось, что связь между количественными характеристиками самых различных процессов, исследуемых физикой, химией, биологией, экономикой, техническими науками, аналогична связи между путём и скоростью. Основным математическим понятием, выражающим эту связь является производная.

Производная. Центральные понятия дифференциального исчисления – производная и дифференциал возникли при рассмотрении большого числа задач естествознания и математики, приводивших к вычислению пределов одного и того же типа. Важнейшие среди них – физическая задача определения скорости неравномерного
Слайд 7

Производная

Центральные понятия дифференциального исчисления – производная и дифференциал возникли при рассмотрении большого числа задач естествознания и математики, приводивших к вычислению пределов одного и того же типа. Важнейшие среди них – физическая задача определения скорости неравномерного движения и геометрическая задача построения касательной к кривой. Рассмотрим подробно каждую из них.

Будем вслед за итальянским учёным Г.Галилеем изучать закон свободного падения тел. Поднимем камешек и затем из состояния покоя отпустим его. Движение свободно падающего тела явно неравномерное. Скорость v постепенно возрастает. Но как именно выглядит зависимость v(t) ?
Слайд 8

Будем вслед за итальянским учёным Г.Галилеем изучать закон свободного падения тел. Поднимем камешек и затем из состояния покоя отпустим его. Движение свободно падающего тела явно неравномерное. Скорость v постепенно возрастает. Но как именно выглядит зависимость v(t) ?

Фиксируем момент t, в который мы хотим знать значение скорости v(t). Пусть h – небольшой промежуток времени, прошедший от момента t. За это время падающее тело пройдёт путь, равный s(t+h)-s(t). Если промежуток времени h очень мал, то приближённо s(t+h)-s(t)≈v(t)∙h, или , причём последнее приближённо
Слайд 9

Фиксируем момент t, в который мы хотим знать значение скорости v(t). Пусть h – небольшой промежуток времени, прошедший от момента t. За это время падающее тело пройдёт путь, равный s(t+h)-s(t). Если промежуток времени h очень мал, то приближённо s(t+h)-s(t)≈v(t)∙h, или , причём последнее приближённое равенство тем точнее, чем меньше h. Значит величину v(t) скорости в момент t можно рассматривать как предел, к которому стремится отношение, выражающее среднюю скорость на интервале времени от момента t до момента t+h. Сказанное записывают в виде

Задача о мгновенной скорости. Предел средней скорости за промежуток времени от t0 до t при t→ t0, называется мгновенной скоростью v(t0) в момент времени t0 v(t0) =
Слайд 10

Задача о мгновенной скорости

Предел средней скорости за промежуток времени от t0 до t при t→ t0, называется мгновенной скоростью v(t0) в момент времени t0 v(t0) =

А л г о р и т м. ∆t = t – t0 ∆x = x – x0 ∆v = v(t+t0) - v(t0) ∆f = f(x+x0) – f(x0) . . На языке предмета На математическом языке
Слайд 11

А л г о р и т м

∆t = t – t0 ∆x = x – x0 ∆v = v(t+t0) - v(t0) ∆f = f(x+x0) – f(x0) . .

На языке предмета На математическом языке

Рассмотрим теперь другой классический пример, который решается в терминах производной, - построение касательной к кривой. Требуется построить прямую Т, касательную в т. А к кривой – графику функции y = f(x).
Слайд 12

Рассмотрим теперь другой классический пример, который решается в терминах производной, - построение касательной к кривой. Требуется построить прямую Т, касательную в т. А к кривой – графику функции y = f(x).

Задача о касательной к графику функции. x y С ∆х=х-х0 ∆f(x) = f(x) - f(x0) tgβ = При х→х0
Слайд 13

Задача о касательной к графику функции

x y С ∆х=х-х0 ∆f(x) = f(x) - f(x0) tgβ = При х→х0

1) ∆x = x – x0 2) ∆f = f(x+x0) – f(x0) 3) 4)
Слайд 14

1) ∆x = x – x0 2) ∆f = f(x+x0) – f(x0) 3) 4)

y=f(x) M0 M T x0 x0+∆x ∆x ∆y 0. Убедитесь, что угловой коэффициент касательной к графику функции y = f(x) можно определить по формуле
Слайд 15

y=f(x) M0 M T x0 x0+∆x ∆x ∆y 0

Убедитесь, что угловой коэффициент касательной к графику функции y = f(x) можно определить по формуле

Задача о скорости химической реакции. Средняя скорость растворения соли в воде за промежуток времени [t0;t1] (масса соли, растворившейся в воде изменяется по закону х = f(t)) определяется по формуле . Скорость растворения в данный момент времени
Слайд 16

Задача о скорости химической реакции

Средняя скорость растворения соли в воде за промежуток времени [t0;t1] (масса соли, растворившейся в воде изменяется по закону х = f(t)) определяется по формуле . Скорость растворения в данный момент времени

∆t = t – t0 ∆x = x – x0 ∆f = f(t1) - f(t0) ∆f = f(x) – f(x0) . .
Слайд 17

∆t = t – t0 ∆x = x – x0 ∆f = f(t1) - f(t0) ∆f = f(x) – f(x0) . .

Задача о теплоёмкости тела. Если температура тела с массой в 1 кг повышается от t1 = 0 до t2 = τ, то это происходит за счёт того, что телу сообщается определённое количество тепла Q; значит Q есть функция температуры τ, до которой тело нагревается: Q=Q(τ). Пусть температура повысилась с τ до τ +Δτ.
Слайд 18

Задача о теплоёмкости тела

Если температура тела с массой в 1 кг повышается от t1 = 0 до t2 = τ, то это происходит за счёт того, что телу сообщается определённое количество тепла Q; значит Q есть функция температуры τ, до которой тело нагревается: Q=Q(τ).

Пусть температура повысилась с τ до τ +Δτ. Количество тепла ΔQ, затраченное для этого нагревания равно: ΔQ=Q(τ+Δτ)-Q(τ). Отношение есть количество тепла, которое необходимо «в среднем» для нагревания тела на 1. Это отношение называется средней теплоёмкостью, которая не даёт представления о теплоёмкости для любого значения температуры τ. Теплоёмкостью при температуре τ называ-ется предел отношения приращения количества тепла ΔQ к приращению температуры Δτ.( при Δτ →0)

∆τ = τ – τ0 ∆x = x – x0 ∆Q = Q(τ1) - Q(τ0) ∆f = f(x) – f(x0) . .
Слайд 19

∆τ = τ – τ0 ∆x = x – x0 ∆Q = Q(τ1) - Q(τ0) ∆f = f(x) – f(x0) . .

Задача о мгновенной величине тока. Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t. Пусть Δt – некоторый промежуток времени, Δq = q(t+Δt) – q(t) – количество электричества, протекающее через указанное сечение за промежуток времени от моме
Слайд 20

Задача о мгновенной величине тока

Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t. Пусть Δt – некоторый промежуток времени, Δq = q(t+Δt) – q(t) – количество электричества, протекающее через указанное сечение за промежуток времени от момента t до момента t + Δt. Тогда отношение называют средней силой тока. Мгновенной силой тока в момент времени t называется предел отношения приращения количества электричества Δq ко времени Δt, при условии, что Δt→0.

∆t = t – t0 ∆x = x – x0 ∆q = q(t1) - q(t0) ∆f = f(x) – f(x0) . .
Слайд 21

∆t = t – t0 ∆x = x – x0 ∆q = q(t1) - q(t0) ∆f = f(x) – f(x0) . .

Экономические задачи. Рассмотрим ситуацию: пусть y - издержки производства, а х - количество продукции, тогда x- прирост продукции, а y - приращение издержек производства. В этом случае производная выражает предельные издержки производства и характеризует приближенно дополнительные затраты на прои
Слайд 22

Экономические задачи

Рассмотрим ситуацию: пусть y - издержки производства, а х - количество продукции, тогда x- прирост продукции, а y - приращение издержек производства. В этом случае производная выражает предельные издержки производства и характеризует приближенно дополнительные затраты на производство дополнительной единицы продукции ,где MC – предельные издержки (marginal costs); TC – общие издержки (total costs); Q - количество.C(t)СС

Аналогичным образом могут быть определены и многие другие экономические величины, имеющие предельный характер. Другой пример - категория предельной выручки (MR— marginal revenue) — это дополнительный доход, полученный при переходе от производства n-ной к (n+1)-ой единице продукта. Она представляет с
Слайд 23

Аналогичным образом могут быть определены и многие другие экономические величины, имеющие предельный характер. Другой пример - категория предельной выручки (MR— marginal revenue) — это дополнительный доход, полученный при переходе от производства n-ной к (n+1)-ой единице продукта. Она представляет собой первую производную от выручки: При этом R= PQ, где R–выручка (revenue); P–цена (price). Таким образом ,  MR= P.

Пусть функция u(t) выражает количество произведенной продукции за время t. Найдем производительность труда в момент t0. За период от t0 до t0+ t количество продукции изменится от u(t0) до u0+ u = u(t0+ t). Тогда средняя производительность труда за этот период поэтому производительность труда в мом
Слайд 24

Пусть функция u(t) выражает количество произведенной продукции за время t. Найдем производительность труда в момент t0. За период от t0 до t0+ t количество продукции изменится от u(t0) до u0+ u = u(t0+ t). Тогда средняя производительность труда за этот период поэтому производительность труда в момент t0

Рост численности населения. Вывести формулу для вычисления численности населения на ограниченной территории в момент времени t. Пусть у=у(t)- численность населения. Рассмотрим прирост населения за t = t - t0 y=k ∙ y ∙ t, где к = кр – кс –коэффициент прироста (кр – коэффициент рождаемости, кс – ко
Слайд 25

Рост численности населения

Вывести формулу для вычисления численности населения на ограниченной территории в момент времени t. Пусть у=у(t)- численность населения. Рассмотрим прирост населения за t = t - t0 y=k ∙ y ∙ t, где к = кр – кс –коэффициент прироста (кр – коэффициент рождаемости, кс – коэффициент смертности) получим

Выводы. Различные задачи привели в процессе решения к одной и той же математической модели – пределу отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю. Значит, эту математическую модель надо специально изучить, т.е.: Присвоить ей новый термин.
Слайд 26

Выводы

Различные задачи привели в процессе решения к одной и той же математической модели – пределу отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю. Значит, эту математическую модель надо специально изучить, т.е.: Присвоить ей новый термин. Ввести для неё обозначение. Исследовать свойства новой модели. Определить возможности применения нового понятия - производная

Определение производной. Производной функции f(x) в точке х называется предел отношения приращения функции в точке х к приращению аргумента, когда приращение аргумента стремится к нулю, если этот предел существует
Слайд 27

Определение производной

Производной функции f(x) в точке х называется предел отношения приращения функции в точке х к приращению аргумента, когда приращение аргумента стремится к нулю, если этот предел существует

Возвращаясь к рассмотренным задачам, важно подчеркнуть следующее: а) мгновенная скорость неравномерного движения есть производная от пути по времени; б) угловой коэффициент касательной к графику функции в точке (x0; f(x)) есть производная функции f(x) в точке х = х0; в) мгновенная сила тока I(t) в м
Слайд 28

Возвращаясь к рассмотренным задачам, важно подчеркнуть следующее: а) мгновенная скорость неравномерного движения есть производная от пути по времени; б) угловой коэффициент касательной к графику функции в точке (x0; f(x)) есть производная функции f(x) в точке х = х0; в) мгновенная сила тока I(t) в момент t есть производная от количества электричества q(t) по времени; г) теплоёмкость С(τ) при температуре τ есть производная от количества тепла Q(τ), получаемого телом; д) скорость химической реакции в данный момент времени t есть производная от количества вещества у(t), участвующего в реакции, по времени t.

А это значит: Аппарат производной можно использовать при решении геометрических задач, задач из естественных и гуманитарных наук, экономических задач оптимизационного характера. И, конечно, не обойтись без производной при исследовании функции и построении графиков, решении уравнений и неравенств У н
Слайд 29

А это значит:

Аппарат производной можно использовать при решении геометрических задач, задач из естественных и гуманитарных наук, экономических задач оптимизационного характера. И, конечно, не обойтись без производной при исследовании функции и построении графиков, решении уравнений и неравенств У нас впереди огромные возможности для исследовательской работы в новых проектах!

«…нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира…» Н.И. Лобачевский

Авторы: Учащиеся 10 класса Амбарцумян Ануш, Дешевых Андрей, Рындин Вячеслав, Макаровская Ирина Леликова Евгения, Морохов Александр.
Слайд 30

Авторы:

Учащиеся 10 класса Амбарцумян Ануш, Дешевых Андрей, Рындин Вячеслав, Макаровская Ирина Леликова Евгения, Морохов Александр.

Список похожих презентаций

«Задания на проценты»

«Задания на проценты»

Пусть каждый день и каждый час Вам новое добудет. Пусть добрым будет ум у Вас, А сердце умным будет. (С. Маршак). Цели урока:. повторить содержание ...
Восхождение на вершину Интеграл

Восхождение на вершину Интеграл

Всякое учение истинно в том, что оно утверждает, и ложно в том, что оно отрицает или исключает. Фрид Вильгельм Лейбниц. Разминка перед восхождением. ...
Влияние коэффициентов а, b и с на расположение графика квадратной функции

Влияние коэффициентов а, b и с на расположение графика квадратной функции

Определите, график какой функции изображен на рисунке:. у = х² – 2х – 1; у = –2х² – 8х; у = х² – 4х – 1; у = 2х² + 8х + 7; у = 2х² – 1. у = ½х² – ...
Влияет ли геометрия города на его образ?

Влияет ли геометрия города на его образ?

Тема : «Влияет ли геометрия города на его образ?» Объект исследования: объектом исследования является расположения и схемы городов. Предмет исследования: ...
Виды. Количество видов на чертежах

Виды. Количество видов на чертежах

Вид – это изображение обращенной к наблюдателю видимой части поверхности предмета. Определение:. . 1. Вид спереди – главный вид (размещается на месте ...
Взаимное расположение прямой и окружности на плоскости

Взаимное расположение прямой и окружности на плоскости

Прямая и окружность пересекаются. d R. d- расстояние от центра окружности до прямой R- радиус окружности. О А В d. Прямая и окружность касаются. d=R. ...
Введение понятий "больше‒меньше" на числовом луче

Введение понятий "больше‒меньше" на числовом луче

1 0 5 меньше левее. 8 больше правее. 3 3 < 5 < 8 8 > 5 > 3. 3 + 5 =. . . ...
Астрономия на координатной плоскости

Астрономия на координатной плоскости

Цели урока:. Закрепить полученные знания и навыки. Проявить творчество при изучении данного раздела. Избежать трудностей при изучении темы «Функция» ...
Авария на промышленном объекте

Авария на промышленном объекте

Цели урока:. Повторить материал по темам “ Площади криволинейных трапеций”, “Решение показательных уравнений”, выявить пробелы в знаниях и постараться ...
3 вида разложение многочлена на множители

3 вида разложение многочлена на множители

1 вид вынесение общего множителя за скобки. Что значит разложить многочлен на множители? Разложить многочлен на множители — это значит представить ...
«Старая сказка на новый лад»

«Старая сказка на новый лад»

3 268 :2 12 396:3 256 130:5 1634 51226. Полетели стрелы в разные стороны. Упала стрела царевича на царский двор. 1634 м. Стрела второго царевича улетела ...
«Моя математика» - задачи на нахождение целого или части

«Моя математика» - задачи на нахождение целого или части

МАТЕМАТИКА 1 3 4 5 7 6 8 9 0. Работа с числовым рядом. http://www.bajena.com/ru/kids/mathematics/sum-mathematics.php. 1. Прочитайте текст справа и ...
«Задачи на проценты»

«Задачи на проценты»

Тема урока: Проценты. Тип урока: урок обобщения и систематизации знаний. Цели урока: Образовательные: Обобщение и систематизация знаний учащихся о ...
"Разрезание геометрических фигур на части"

"Разрезание геометрических фигур на части"

ЗАДАЧИ НА РАЗРЕЗАНИЯ. Теорема Бойяи-Гервина гласит: любой многоугольник можно так разрезать на части, что из этих частей удастся сложить квадрат. ...
Геометрические задачи на экстремум

Геометрические задачи на экстремум

Определения. Задачи, где требуется определить условия, при которых некоторая величина принимает наибольшее и наименьшее значение, принято называть ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Аксиомы расположения точек на прямой и плоскости

Аксиомы расположения точек на прямой и плоскости

Выполните действия и сделайте записи:. 1. Изобразите точку С, лежащую на прямой а. 2. Изобразите точку D, не лежащую на этой прямой. 3. Проведите ...
Бумажные складные модели и их использование на уроках геометрии в 10 классе

Бумажные складные модели и их использование на уроках геометрии в 10 классе

Модель 1 – «Две пересекающиеся плоскости». Согнутый пополам лист бумаги служит моделью двух пересекающихся плоскостей. Линия сгиба – прямая их пересечения. ...
Активизация мыслительной деятельности на уроках математики

Активизация мыслительной деятельности на уроках математики

Активные формы урока. Урок-лекция. Урок-консультация. Урок-практикум Урок-семинар Урок-зачёт. урок-лекция. Зачёт №2 по геометрии в 11 классе 1.Объясните, ...

Конспекты

Деление как арифметическое действие. Деление на однозначное число

Деление как арифметическое действие. Деление на однозначное число

Автор: Дровосекова Ольга Афанасьевна. Тема разработки: Интегрированный урок математики и английского языка с использованием ИКТ «Деление как арифметическое ...
Деление десятичных дробей на натуральные числа

Деление десятичных дробей на натуральные числа

Урок по теме. . «Деление десятичных дробей на натуральные числа». . Учитель математики ВКК. МБОУ БГО СОШ №4. Конева Надежда Александровна. ...
Деление и умножение на однозначное число. Решение задач с использованием экологических понятий и терминов

Деление и умножение на однозначное число. Решение задач с использованием экологических понятий и терминов

Полякова Елена Александровна. учитель начальных классов. НОУ «Школа – интернат №8 ОАО «РЖД». УРОК . МАТЕМАТИКИ. (3. класс). Тема. : «. ...
Алгоритм решения задачи на нахождение целого и частей

Алгоритм решения задачи на нахождение целого и частей

. Тимошенкова. Ирина Викторовна. Учитель начальных классов. МБ НОУ «Гимназия № 70». Г. Новокузнецк. Алгоритм. решения задачи. ...
Деление десятичной дроби на натуральное число

Деление десятичной дроби на натуральное число

Тема: Деление десятичной дроби на натуральное число. Цели. :. -обучающая: закрепление навыков деления десятичной дроби на натуральное число;. ...
Деление многозначного числа на однозначное

Деление многозначного числа на однозначное

Конспект урока по математике в 4 классе. Буклаева Светлана Викторовна. ,. . учитель начальных классов. . высшей категории. МОУ «Средняя общеобразовательная ...
Деление многозначного числа на однозначное число (вида 312 : 3)

Деление многозначного числа на однозначное число (вида 312 : 3)

Урок математики 3 класс. Тип урока. : ОНЗ. Тема:. «Деление многозначного числа на однозначное число (вида 312 : 3).». Основные цели:. 1) формировать ...
Внетабличное деление двузначногочисла на однозначное

Внетабличное деление двузначногочисла на однозначное

«Внетабличное деление двузначного числа на однозначное». Цели:. Образовательная. : формировать умение выполнять внетабличное деление двузначных ...
Вычисление площадей фигур на клетчатой бумаге

Вычисление площадей фигур на клетчатой бумаге

Фрагмент урока по теме:. . Вычисление площадей фигур на клетчатой бумаге. . . Цель :. . c. истематизация знаний по нахождению площадей геометрических ...
Виды углов. Умножение и деление двузначного числа на однозначное

Виды углов. Умножение и деление двузначного числа на однозначное

Павлодарская область. Актогайский район. . с.Барлыбай. . . Енбекшинская средняя школа. Тема:. . «Виды углов. Умножение и деление двузначного. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:23 января 2019
Категория:Математика
Содержит:30 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации