- Нуклеиновые кислоты

Презентация "Нуклеиновые кислоты" по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22

Презентацию на тему "Нуклеиновые кислоты" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 22 слайд(ов).

Слайды презентации

Нуклеиновые кислоты. Научный руководитель: Лебединская Е.М. Подготовил: студент группы Т-1 Панкратов Дмитрий. Химия
Слайд 1

Нуклеиновые кислоты

Научный руководитель: Лебединская Е.М. Подготовил: студент группы Т-1 Панкратов Дмитрий

Химия

Нуклеиновые кислоты - природные высокомолекулярные соединения (биополимеры), макромолекулы Которых состоят из мононуклеотидов. Таким образом, нуклеиновые кислоты являются полинуклеотидами. Нуклеиновые кислоты впервые были обнаружены в 1868г. швейцарским химиком Ф.Мишером в клеточном ядре. Относитель
Слайд 3

Нуклеиновые кислоты - природные высокомолекулярные соединения (биополимеры), макромолекулы Которых состоят из мононуклеотидов.

Таким образом, нуклеиновые кислоты являются полинуклеотидами.

Нуклеиновые кислоты впервые были обнаружены в 1868г. швейцарским химиком Ф.Мишером в клеточном ядре.

Относительная молекулярная масса нуклеиновых кислот варьируется от 104 до 1010.

При полном гидролизе Н.К. получают два набора продуктов гидролиза. 1.Фосфорная кислота, дезоксирибоза, два пуриновых основания(аденин и гуанин) и два пиримидиновых основания(цитозин и тимин) 2.Фосфорная кислота, рибоза, два пуриновых основания(аденин и гуанин) и два пиримидиновых основания(цитозин и урацил).

Продуктами полного гидролиза нуклеиновых кислот являются гетероциклические азотистые основания, углеводы (рибоза или дезоксирибоза) и фосфорная кислота, следовательно, остатки этих соединений являются структурными компонентами нуклеиновых кислот.

ИСТОРИЯ ОТКРЫТИЯ ТИПЫ НУКЛЕИНОВЫХ КИСЛОТ ФРАГМЕНТ ПОЛИНУКЛЕОТИДА КОМПОНЕНТЫ МОНОНУКЛЕОТИДОВ ДНК РНК АТФ

Возврат в меню Следующий слайд Предыдущий слайд Выход

химия. нуклеиновые кислоты

ИСТОРИЯ ОТКРЫТИЯ. В 1869 году , когда Ф. Мишер выделил из ядер клеток особое вещество, обладавшее кислыми свойствами и названное им нуклеином. Нуклеин содержал большое количество фосфора. В 1889 году Альтман ввёл термин – нуклеиновая кислота. Начиная с 1879 года А. Коссель стал проводить свои исслед
Слайд 4

ИСТОРИЯ ОТКРЫТИЯ

В 1869 году , когда Ф. Мишер выделил из ядер клеток особое вещество, обладавшее кислыми свойствами и названное им нуклеином. Нуклеин содержал большое количество фосфора. В 1889 году Альтман ввёл термин – нуклеиновая кислота. Начиная с 1879 года А. Коссель стал проводить свои исследования по химии нуклеина. Он показал, что в его состав кроме фосфорной кислоты входят пурины и пиримидины (азотистые основания), а также углеводные компоненты. Было обнаружено четыре азотистых оснований: два пурина – аденин и гуанин и два пиримидина – тимин и цитозин.

В 1924 году Р. Фельген разработал методы цитологического распознавания ДНК и РНК. Оказалось, что фуксин избирательно связывается с ДНК. Ранее считалось, что ДНК свойственна только животным клеткам. Фельген обнаружил ДНК в ядрах клеток растений. Он цитологически показал, что ДНК локализирует в ядрах клеток, а РНК – в цитоплазме. В 1936 году А. Н. Белозёрским и Н. И. Дубровской ДНК в чистом виде была выделена из ядер растений. В 1934 году Т. Касперссон, используя специфику поглощения ДНК ультрафиолетового цвета, показал связь молекул ДНК с хромосомами.

Хаймарстен и Касперссон обнаружили, что молекулы ДНК обладают большим молекулярным весом, превышающим вес молекул белка. В это же время В. Стэнли, Ф. Боуден и Н. Пири, исследуя растительные вирусы, пришли к заключению, что все вирусы содержат нуклеиновую кислоту. В свете этого они считали возможным придать нуклеиновым кислотам значение генетического материала. Эти открытия стимулировали глубокий интерес к молекулам ДНК и их генетической роли.

В 1947 году Э. Чаргафф обнаружил, что разные виды организмов характеризуются разным количественным соотношением пуриновых и пиримидиновых оснований. Это указывало на принципиально новое и важное положение, гласившее, что генетическая специфичность может быть связана с составом нуклеотидов в молекуле
Слайд 5

В 1947 году Э. Чаргафф обнаружил, что разные виды организмов характеризуются разным количественным соотношением пуриновых и пиримидиновых оснований. Это указывало на принципиально новое и важное положение, гласившее, что генетическая специфичность может быть связана с составом нуклеотидов в молекуле ДНК.

В 1953 году Дж. Уотсон и Ф. Крик, опираясь на данные Чаргаффа, на материал рентгеноструктурного анализа, на принципы теории гена в роль аналитических данных, создали модель макромолекулярной структуру ДНК. Согласно этой модели, молекула ДНК состоит из двух полинуклеотидных цепей, взаимно обвитых одна вокруг другой. Таким образом, модель Уотсона-Крика открыла путь к исследованию важнейших генетических явлений.

Вторым важнейшим открытием Э. Чаргаффа было обнаружение, что соотношение азотистых оснований в молекуле ДНК не случайно. Оказалось, что в данной выборке ДНК количество тиминов равно количеству аденинов, а количество гуанинов равно количеству цитозинов

ТИПЫ НУКЛЕИНОВЫХ КИСЛОТ. Нуклеиновые кислоты, как и белки, обладают первичной структурой (т.е. определенной последовательностью нуклеотидных остатков в полинуклеотидной цепи) и трехмерной (пространственной) структурой. Существует три типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновые кислоты), РНК
Слайд 6

ТИПЫ НУКЛЕИНОВЫХ КИСЛОТ

Нуклеиновые кислоты, как и белки, обладают первичной структурой (т.е. определенной последовательностью нуклеотидных остатков в полинуклеотидной цепи) и трехмерной (пространственной) структурой.

Существует три типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновые кислоты), РНК (рибонуклеиновые кислоты) и АТФ (аденозинтрифосфат). Подобно углеводам и белкам, это полимеры. Как и белки, нуклеиновые кислоты являются линейными полимерами. Однако их мономеры – нуклеотиды – являются сложными веществами, в отличие от достаточно простых сахаров и аминокислот.

ФРАГМЕНТ ПОЛИНУКЛЕОТИДА. Остаток углевода. Остаток ортофос- форной кислоты. Остаток гетероцик- лического азотистого основания. Структурное звено полинуклеотида – остаток мононуклеотида(состоит из трех компонентов)
Слайд 7

ФРАГМЕНТ ПОЛИНУКЛЕОТИДА

Остаток углевода

Остаток ортофос- форной кислоты

Остаток гетероцик- лического азотистого основания

Структурное звено полинуклеотида – остаток мононуклеотида(состоит из трех компонентов)

1. Гетероциклические азотистые основания. 2. Углеводные компоненты. Углеводы, входящие в состав нуклеотидов, содержат 5 атомов углерода(пентозы). Это β - рибоза C5H10O5 и β - дезоксирибоза С5H10O4 в циклической форме. 3. Ортофосфорная кислота. Нуклеиновые кислоты являются многоосновными кислотами, п
Слайд 8

1. Гетероциклические азотистые основания

2. Углеводные компоненты

Углеводы, входящие в состав нуклеотидов, содержат 5 атомов углерода(пентозы). Это β - рибоза C5H10O5 и β - дезоксирибоза С5H10O4 в циклической форме.

3. Ортофосфорная кислота

Нуклеиновые кислоты являются многоосновными кислотами, потому что в их молекулах содержатся остатки ортофосфорной кислоты C3PO4. Схема образования полинуклеотида:

OH HO-P=O p y N + + …….. …….. + nH2O поликонденсация гидролиз мононуклеотиды полинуклеотид

Пуриновые основания

Пиримидиновые основания

Нуклеозиды Нуклеотиды

КОМПОНЕНТЫ МОНОНУКЛЕОТИДОВ

ПИРИМИДИНОВЫЕ ОСНОВАНИЯ. ПИРИМИДИНОВЫЕ ОСНОВАНИЯ -производные пиримидина – шестичленного гетероцикла, содержащего 2 атома азота. Для пиримидиновых оснований, содержащих в молекулах ОН – группы, характерна кето-енольная (лактамлактимная) таутомерия, связанная с миграцией протона между атомами азота и
Слайд 9

ПИРИМИДИНОВЫЕ ОСНОВАНИЯ

ПИРИМИДИНОВЫЕ ОСНОВАНИЯ -производные пиримидина – шестичленного гетероцикла, содержащего 2 атома азота. Для пиримидиновых оснований, содержащих в молекулах ОН – группы, характерна кето-енольная (лактамлактимная) таутомерия, связанная с миграцией протона между атомами азота и кислорода. Енольные формы содержат гидроксильные группы – ОН и двойные связи у одних и тех же атомов углерода в цикле пиримидина. Кето – формы содержат атомы кислорода, связанные двойной связью с атомами углерода в цикле пиримидина. В состав нуклеиновых кислот пиримидиновые основания входят в кето – формах.

ПУРИНОВЫЕ ОСНОВАНИЯ- производные пурина, который представляет собой конденсированный гетероцикл, состоящий из цикла пиримидина и цикла имидазола. ПУРИНОВЫЕ ОСНОВАНИЯ
Слайд 10

ПУРИНОВЫЕ ОСНОВАНИЯ- производные пурина, который представляет собой конденсированный гетероцикл, состоящий из цикла пиримидина и цикла имидазола.

ПУРИНОВЫЕ ОСНОВАНИЯ

НУКЛЕОЗИДЫ - это двухкомпонентные системы, состоящие из углеводных остатков и азотистых оснований, связанных β-гликозидной связью, которая образуется между атомами С (1) углевода и N (9) в пуриновых или N (1) в пиримидиновых азотистых основаниях. НУКЛЕОЗИДЫ
Слайд 11

НУКЛЕОЗИДЫ - это двухкомпонентные системы, состоящие из углеводных остатков и азотистых оснований, связанных β-гликозидной связью, которая образуется между атомами С (1) углевода и N (9) в пуриновых или N (1) в пиримидиновых азотистых основаниях.

НУКЛЕОЗИДЫ

НУКЛЕОТИДЫ – это фосфаты нуклеозидов, т.е. сложные эфиры нуклеозидов и фосфорной кислоты. НУКЛЕОТИДЫ
Слайд 12

НУКЛЕОТИДЫ – это фосфаты нуклеозидов, т.е. сложные эфиры нуклеозидов и фосфорной кислоты.

НУКЛЕОТИДЫ

ДНК. Английские ученые Джеймс Уотсон и Френсис Крик в 1953 г. предложили пространственную модель молекулы ДНК. Согласно этой модели, макромолекула ДНК представляет собой спираль, состоящую из двух полинуклеотидных цепей, закрученных вокруг общей оси. Азотистые основания располагаются внутри спирали.
Слайд 13

ДНК

Английские ученые Джеймс Уотсон и Френсис Крик в 1953 г. предложили пространственную модель молекулы ДНК. Согласно этой модели, макромолекула ДНК представляет собой спираль, состоящую из двух полинуклеотидных цепей, закрученных вокруг общей оси. Азотистые основания располагаются внутри спирали. На 1 виток спирали приходится, как правило, 10 нуклеотидов. Цепи выстраиваются в противоположных направлениях и удерживаются вместе водородными связями, образующимися между пуриновыми и пиримидиновыми основаниями. Водородные связи образуются лишь между определенными основаниями: А = Т (соединены двумя водородными связями); Г = Ц (соединены тремя водородными связями). Такие пары оснований называются комплементарными парами. Таким образом, вторичная структура ДНК — это двойная спираль, образующаяся за счет водородных связей между комплементарными парами гетероциклических оснований. длина молекулы ДНК хромосомы человека достигает 8 см, но умещается в хромосоме длиной в несколько нано метров. Это объясняется тем, что двухцепочечная спираль ДНК в пространстве укладывается в еще более сложную кольцевую форму, или суперспираль. Генетическая информация, необходимая для управления синтезом белков со строго определенной структурой, закодирована нуклеотидной последовательностью цепи ДНК. В ДНК содержится всего 4 основания (А, Г, Ц, Т), кодирующей единицей для каждой аминокислоты белка являются триплет (код из трех оснований), всего возможны вариантов б4(43 = 64). Это более чем достаточно для кодирования 20 различных аминокислот входящих в состав белков.

СТРОЕНИЕ ФУНКЦИИ

ДНК.СТРОЕНИЕ. ДНК – дезоксирибонуклеиновая кислота – высокомолекулярный линейный полимер, состоящий из двух полинуклеотидных цепей. Мономерами ДНК являются нуклеотиды 4 типов: А, Т, Г и Ц; все они построены на основе сахара дезоксирибозы. Повторяться внутри ДНК нуклеотиды могут бесчисленное количест
Слайд 14

ДНК.СТРОЕНИЕ

ДНК – дезоксирибонуклеиновая кислота – высокомолекулярный линейный полимер, состоящий из двух полинуклеотидных цепей. Мономерами ДНК являются нуклеотиды 4 типов: А, Т, Г и Ц; все они построены на основе сахара дезоксирибозы. Повторяться внутри ДНК нуклеотиды могут бесчисленное количество раз: 23 молекулы ДНК человека, например, содержат в себе более 3 млрд. пар нуклеотидов!

Каждая из цепей ДНК является линейным полимером, в котором нуклеотиды последовательно соединены друг с другом при помощи ковалентной фосфодиэфирной связи, которая образует между молекулой сахара, одного нуклеотида и фосфорной кислотой другого нуклеотида.

Образующаяся в результате цепочка имеет гигантскую длину – десятки и сотни миллионов нуклеотидов и вес 1010 -1111 . Она столь велика, что молекулу ДНК видно в световой микроскоп в виде хромосомы. В отличие от остальных веществ клетки, ДНК представляет собой двухцепочную молекулу, в которой обе цепи
Слайд 15

Образующаяся в результате цепочка имеет гигантскую длину – десятки и сотни миллионов нуклеотидов и вес 1010 -1111 . Она столь велика, что молекулу ДНК видно в световой микроскоп в виде хромосомы.

В отличие от остальных веществ клетки, ДНК представляет собой двухцепочную молекулу, в которой обе цепи прочно связаны друг с другом. Существование подобной структуры возможно благодаря особенностям строения нуклеотидов. Цепи ДНК ориентированы строго определённым образом: азотистые основания нуклеотидов обеих цепей обращены внутрь, а сахара и фосфаты – наружу; кроме того, цепи расположены очень близко друг к другу (около 1,8 нм).

В результате такого пространственного расположения между азотистыми основаниями двух нуклеотидов, расположенных друг напротив друга в обеих цепях, возникают нековалентные водородные связи. Это слабые связи, однако за счёт большого количества они прочно связывают обе цепи. В 1949 году Э. Чаргафф опуб
Слайд 16

В результате такого пространственного расположения между азотистыми основаниями двух нуклеотидов, расположенных друг напротив друга в обеих цепях, возникают нековалентные водородные связи. Это слабые связи, однако за счёт большого количества они прочно связывают обе цепи.

В 1949 году Э. Чаргафф опубликовал работы о закономерностях количественного содержания азотистых оснований в молекуле ДНК, позже они были названы правилами Чаргаффа. Одно из них гласит, что количество аденинов А равно количеству тиминов Т, а количество гуанинов Г – цитозинов Ц, то есть А=Т, Г=Ц. Основанием этого правила является следующий факт. Структура азотистых оснований такова, что из всех возможных взаимодействий их друг с другом энергетически и пространственно осуществляется одно-единственное, то есть определённое азотистое основание может взаимодействовать с одним единственным типом азотистых оснований.

Оказалось, что А может взаимодействовать только с Т, но не с А, Г или Ц. Т взаимодействует только с А, Г – только с Ц, а Ц – только с Г. Такое избирательное взаимодействие нуклеотидов друг с другом называют принципом комплементарности, а сами нуклеотиды – комплементарными. Говорят, что А комплемента
Слайд 17

Оказалось, что А может взаимодействовать только с Т, но не с А, Г или Ц. Т взаимодействует только с А, Г – только с Ц, а Ц – только с Г. Такое избирательное взаимодействие нуклеотидов друг с другом называют принципом комплементарности, а сами нуклеотиды – комплементарными. Говорят, что А комплементарен Т, а Г комплементарен Ц. Принцип комплементарности имеет огромное значения для строения и функционирования нуклеиновых кислот.

Поскольку нуклеотиды взаимодействуют друг с другом по принципу комплементарности, то существует строгая закономерность расположения обоих нуклеотидов в обеих цепях. Напротив А одной цепи находится Т в другой, а напротив Г стоит Ц, и наоборот. Поэтому, зная последовательность нуклеотидов одной цепи всегда можно точно знать нуклеотидную последовательность второй цепи.

ДНК.ФУНКЦИИ. Функцией ДНК является хранение, передача и воспроизведение в ряду поколений генетической информации. В организме ДНК, являясь основой уникальности индивидуальной формы, определяет, какие белки и в каких количествах необходимо синтезировать.
Слайд 18

ДНК.ФУНКЦИИ

Функцией ДНК является хранение, передача и воспроизведение в ряду поколений генетической информации. В организме ДНК, являясь основой уникальности индивидуальной формы, определяет, какие белки и в каких количествах необходимо синтезировать.

РНК. СТРОЕНИЕ. Строение молекул РНК во многом сходно со строением молекул ДНК. Тем не менее имеется ряд существенных отличий. В состав нуклеотидов РНК вместо дезоксирибозы входит сахар рибоза. Основание тимин замещено на урацил. Главное отличие от ДНК состоит в том, что РНК имеет лишь одну цепь. Из-
Слайд 19

РНК. СТРОЕНИЕ

Строение молекул РНК во многом сходно со строением молекул ДНК. Тем не менее имеется ряд существенных отличий. В состав нуклеотидов РНК вместо дезоксирибозы входит сахар рибоза. Основание тимин замещено на урацил. Главное отличие от ДНК состоит в том, что РНК имеет лишь одну цепь. Из-за этого химически РНК менее стабильна, чем ДНК: вводных растворах РНК быстрее подвергается расщеплению. Поэтому РНК менее подходит для долговременного хранения информации.

Макромолекула РНК, как правило, представляет собой одну полинуклеотидную цепь, принимающую различные пространственные формы, в том числе и спиралеобразные.

Однако её нуклеотиды также способны образовывать водородные связи между собой (например, в молекулах тРНК), но это внутри,- а не межцепочечное соединение комплементарных нуклеотидов. Устойчивых комплексов с другими молекулами РНК или ДНК в норме РНК не образует. Цепи РНК значительно короче цепей ДНК
Слайд 20

Однако её нуклеотиды также способны образовывать водородные связи между собой (например, в молекулах тРНК), но это внутри,- а не межцепочечное соединение комплементарных нуклеотидов. Устойчивых комплексов с другими молекулами РНК или ДНК в норме РНК не образует. Цепи РНК значительно короче цепей ДНК. У небольшой группы вирусов носителем генетической информации является двухцепочная РНК, которая заменяет ДНК остальных живых организмов. Это единственный пример стабильного РНК-РНК комплекса. РНК обнаружено также в цитоплазме.

АТФ. Роль нуклеотидов в организмах не ограничивается тем, что они являются мономерам нуклеиновых кислот. Например, молекула аденозинтрифосфорной кислоты (АТФ) содержит остатки аденина, рибозы и фосфорной кислоты, т. е. по своему составу также является нуклеотидом. Существенное отличие АТФ от нуклеот
Слайд 21

АТФ

Роль нуклеотидов в организмах не ограничивается тем, что они являются мономерам нуклеиновых кислот. Например, молекула аденозинтрифосфорной кислоты (АТФ) содержит остатки аденина, рибозы и фосфорной кислоты, т. е. по своему составу также является нуклеотидом. Существенное отличие АТФ от нуклеотида нуклеиновых кислот состоит в том, что вместо одного остатка фосфорной кислоты в АТФ содержится три таких остатка:

Главной функцией АТФ является хранение, перенос и выделение энергии, необходимой для протекания любых реакций. Все процессы в клетке, которые обеспечивают её энергией, в конечном счёте приводят к образованию АТФ из АДФ и фосфата (или из АМФ и двух фосфатов).

При окислении белков, углеводов и жиров, поступающих в организм с пищей, выделяется энергия, которая аккумулируется в АТФ, т. е. накапливается в процессе превращения аденозинмонофосфорной кислоты (АМФ) и аденозиндифосфорной кислоты (АДФ) в АТФ: За счет обратной реакции (гидролиза АТФ) АТФ + Н2О АДФ
Слайд 22

При окислении белков, углеводов и жиров, поступающих в организм с пищей, выделяется энергия, которая аккумулируется в АТФ, т. е. накапливается в процессе превращения аденозинмонофосфорной кислоты (АМФ) и аденозиндифосфорной кислоты (АДФ) в АТФ: За счет обратной реакции (гидролиза АТФ) АТФ + Н2О АДФ + Н3РО4 +40 кДж/моль запасенная в макроэргических связях энергия выделяется и используется живыми организмами на энергетические процессы: сокращение мышц, биосинтез белка, поддержание температуры тела у теплокровных животных и т. д. Таким образом, АТФ играет центральную роль в энергетическом обмене клетки.

АТФ – достаточно стабильное соединение, он способен перемещаться по всей клетке, «храня в себе» запас энергии. В том месте, где она необходима, АТФ расщепляется и выделяет «порцию» энергии. Образуется АТФ преимущественно в митохондриях. АТФ является универсальным переносчиком энергии. Все живые организмы Земли используют его. Существуют и другие макроэргические связи и другие макроэрги, но только АТФ является «всеобщей энергетической валютой», которую «признают» все химические процессы.

Список похожих презентаций

Нуклеиновые кислоты: структура и функции

Нуклеиновые кислоты: структура и функции

Доказательства генетической роли ДНК. Открытие нуклеиновых кислот – Ф. Мишер, 1869. Трансформация бактерий – Ф.Гриффитс, 1928-1931. 1944 г. - О. Эйвери, ...
Нуклеиновые кислоты(НК).

Нуклеиновые кислоты(НК).

Детский вопрос. «Почему у коров рождаются телята, а у людей – люди?». Нуклеиновые кислоты. Нуклеиновые кислоты - биологические полимерные молекулы, ...
Нуклеиновые кислоты-свойства и строение

Нуклеиновые кислоты-свойства и строение

Нуклеиновые кислоты, строение и свойства Нуклеиновые кислоты представляют собой высокомолекулярные линейные гетерополимеры с молекулярной массой от ...
Высшие природные полимеры - Белки и Нуклеиновые кислоты

Высшие природные полимеры - Белки и Нуклеиновые кислоты

Цель урока: Закрепить и углубить представления учащихся о природных полимерах на примере белков и нуклеиновых кислот. Систематизировать знания о составе, ...
Нуклеиновые кислоты

Нуклеиновые кислоты

(от лат. nucleus — ядро) — высокомолекулярные органические соединения, биополимеры (полинуклеотиды), образованные остатками нуклеотидов. с молекулярной ...
Нуклеиновые кислоты

Нуклеиновые кислоты

ДНК. Расшифровка аббревиатуры ДНК. ДНК – открытие и выделение «нуклеина» из ядер (нуклеус) лейкоцитов Ф. Мишером 1869 г. ДНК – линейный сополимер ...
Нуклеиновые кислоты

Нуклеиновые кислоты

Содержание. Строение. История открытия. Виды. Химическое строение нуклеиновых кислот. Нуклеиновые кислоты являются биополимерами, мономеры которых ...
Нуклеиновые кислоты

Нуклеиновые кислоты

Нуклеиновые кислоты – биополимеры, (полинуклеотиды), которые построены из нуклеотидных остатков. Нуклеиновые кислоты. Строение. Существует два типа ...
Органические вещества. Нуклеиновые кислоты

Органические вещества. Нуклеиновые кислоты

Цель урока: изучение строения и функций нуклеиновых кислот. Задачи: Образовательная: показать взаимосвязь строения и выполняемой функции на примере ...
Нуклеиновые кислоты

Нуклеиновые кислоты

Цель и задачи урока. 1.знакомство с видами нуклеиновых кислот. 2. рассмотреть строение и особенности их строения 3.значение нуклеиновых кислот для ...
Карбоновые кислоты

Карбоновые кислоты

Тема урока: Карбоновые кислоты. Цели урока: рассмотреть строение молекул карбоновых кислот и карбоксильной группы; познакомиться с классификацией ...
Предельные карбоновые кислоты

Предельные карбоновые кислоты

Тема урока: «Предельные одноосновные карбоновые кислоты». Цель урока: •Знать строение одноосновных карбоновых кислот, их определение, изомеры, гомологи, ...
Подготовка к ЕГЭ: Кислородсодержащие органические соединения. Карбоновые кислоты

Подготовка к ЕГЭ: Кислородсодержащие органические соединения. Карбоновые кислоты

Органические карбоновые кислоты характеризуются наличием карбоксильной группы –СООН. По числу групп различают: одно- СН3-СООН – уксусная или этановая ...
Органические кислоты

Органические кислоты

Выберите раздел Лимонная кислота. Муравьиная кислота. Ацетилсалициловая кислота. Молочная кислота Яблочная кислота. Высшие жирные кислоты. Уксусная ...
Карбоновые кислоты

Карбоновые кислоты

Карбоновые кислоты — класс органических соединений, молекулы которого содержат карбоксильную группу - COOH. Состав предельных одноосновных карбоновых ...
Свойства уксусной кислоты

Свойства уксусной кислоты

Немного истории... Уксус является продуктом брожения вина. Первое упоминание о его практическом применении относится к третьему веку до н. э. Греческий ...
Карбоновые кислоты и их строение

Карбоновые кислоты и их строение

Назовите:. Н-СООН СН3-СООН СН3-СН2-СООН СН3-СН2-СН2-СООН СН3-СН2-СН2-СН2-СООН O R-C CnH2nO2 OH. Выберите изомеры и гомологи. а)СН3-СН-СООН б) СН3 ...
Карбоновые кислоты и их производные

Карбоновые кислоты и их производные

Функциональные производные карбоновых кислот. Образование сложных эфиров R'–COOR":. Реакция образования сложного эфира из кислоты и спирта называется ...
Карбоновые кислоты в природе, химические свойства, применение

Карбоновые кислоты в природе, химические свойства, применение

План конференции:. 1. «мозговой штурм» 2. Блицопрос 3.Презентация (часть1): номенклатура, строение, классификация 4. Пресс-конференция 5. Презентация ...
Карбоновые кислоты 4

Карбоновые кислоты 4

Строение. Карбоновые кислоты – это вещества, содержащие в молекуле одну или несколько карбоксильных групп. Карбоксильная группа – группа атомов Состав ...

Конспекты

Химические свойства серной кислоты

Химические свойства серной кислоты

 . Химические свойства серной кислоты.            Данный урок- презентация по теме « Химические свойства серной кислоты» позволяет реализовать ...
Азотная кислота и ее соли. Окислительные свойства азотной кислоты

Азотная кислота и ее соли. Окислительные свойства азотной кислоты

Урок 21. Азотная кислота и ее соли. Окислительные свойства азотной кислоты. Цели урока:. 1. Охарактеризовать азотную кислоту по следующей схеме: ...
Соли азотной кислоты

Соли азотной кислоты

Петрова Марина Валериевна. МОУ «Кокшамарская средняя общеобразовательная школа им.И.С.Ключникова-Палантая» Звениговского района Республики Марий ...
Соли угольной кислоты

Соли угольной кислоты

Соли угольной кислоты. МБОУ СОШ №44 г. Владимир. Учитель химии Уварова Марина Леонидовна. Урок химии в 9 классе. Задачи урока:. образовательные:. ...
Производство серной кислоты

Производство серной кислоты

Производство серной кислоты. . Сырьё для получения:. самородная ромбическая сера, пирит (серный колчедан, железный колчедан), сульфиды цветных ...
Пути познания серной кислоты

Пути познания серной кислоты

Пути познания. серной кислоты. Познание - это солнечный свет, без которого не может развиваться человечество. Н.Бердяев. «. О мощности государства ...
Карбоновые кислоты

Карбоновые кислоты

Проект конспекта урока. Педагог:. Корепанова Светлана Вячеславовна, учитель химии и биологии МБОУ Игринская СОШ № 2 Удмуртской Республики. Категория ...
Приключения серной кислоты

Приключения серной кислоты

Урок - сказка «Приключение Серной Кислоты». (9 класс). Цели урока: Закрепить и проверить знания учащихся по теме «Подгруппа кислорода», сравнить ...
Карбоновые кислоты

Карбоновые кислоты

Тема №4, Урок №8 (1ч) Утверждаю_______________. « Карбоновые кислоты». Тип урока:. урок формирования новых знаний. Форма урока:. комбинированная. ...
Карбоновые кислоты

Карбоновые кислоты

Войстрик Т.И. учитель химии, биологии. Белагашская школа-сад. Жаксынского района. Акмолинской области. Урок химии в 9 классе. Тема: Карбоновые ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:27 октября 2018
Категория:Химия
Содержит:22 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации