- Тригонометрические уравнения

Конспект урока «Тригонометрические уравнения» по алгебре для 10 класса

Конспект урока по алгебре в 10 классе

Автор: Березовская Дарья Ивановна

 учитель математики МБОУ «Сухинская СОШ»

Тема:  Тригонометрические уравнения

Цели урока:

  • образовательные – закрепить и систематизировать виды и методы  решения тригонометрических уравнений;

  • развивающие – уметь применять приемы сравнения, обобщения, выделения главного; развитие математического кругозора, мышления и речи, внимания и памяти;

  • воспитательные – формирование коммуникативных способностей у учащихся.

Тип урока: урок закрепления и систематизации знаний и умений учащихся.

Методы обучения: частично – поисковый, эвристическая беседа, работа по опорным схемам, решение познавательных обобщающих задач, самопроверка.

Формы организации урока: фронтальная, групповая,  индивидуальная формы

Оборудование урока: компьютер, проектор, экран, «кубик – экзаменатор»

Структура урока:

I   Организационный момент (1 мин)

II  Математический диктант (7 мин)

III  Историческая справка (4 мин)

IV  Систематизация теоретического материала (определение видов, типов тригонометрических уравнений и методов их решения)  (7 мин)

V  Обсуждение идей решения уравнений  (10 мин)

VI  Дифференцированная самостоятельная работа  (10 мин)

VII  Домашнее задание  (2 мин)

VIII  Итог урока  (4 мин)

Ход урока.

I   Организационный момент. Объявление темы, цели урока.

II  Математический диктант. (через копирку)

Цель: контроль знаний, приведение в систему знаний по простейшим тригонометрическим уравнениям.

 I вариант

  1. Чему равен  arcsin(-a)?  

  2. Чему равен arcctg(-a)?

  3. Каково будет решение уравнения  sin x = a  при IaI большем 1?

  4. Какой формулой выражается решение уравнения sin x =  а при IaI≤ 1 ?

  5. Какой формулой выражается решение уравнения   ctg х = а?

  6. Каким будет решение уравнения cos x =1?

  7. Каким будет решение уравнения cos x =-1?

  8. Каким будет решение уравнения cos x =0?

II вариант

  1. Чему равен arccos(-a) ? 

  2. Чему равен arctg(-a) ?

  3. Каково будет решение уравнения  cos x = a  при IaI большем 1?

  4. Какой формулой выражается решение уравнения cos x = a при  IaI≤ 1?

  5. Какой формулой выражается решение уравнения tgх= а?

  6. Каким будет решение уравнения  sin x =1 ?

  7. Каким будет решение уравнения sin x = -1?

  8. Каким будет решение уравнения sin x =0?

После окончания математического диктанта собираются листочки – оригиналы (верхние), копии (нижние листы) остаются у детей. Учитель открывает правильные ответы на экране, идет самопроверка, самооценка.

Итоги математического диктанта. Выводы. (Учитель спрашивает у кого все верно, у кого 1 ошибка и т.д.)

III  Историческая справка

Выступают 2 учащихся, которые  подготовили сообщения о развитии тригонометрических уравнений.

Цель: развитие математического кругозора, воспитание интереса к математике.

IV  Систематизация теоретического материала (определение видов, типов тригонометрических уравнений и методов их решения)

Цель: Обобщение, систематизация знаний по видам, типам тригонометрических уравнений и методам их решений.

Фронтальная работа. На доске написаны уравнения:

  1. sin 3x = 1

  2. cos2 x – 9 cos x + 8 = 0

  3. 2 cos2 x + 3 sin x = 0

  4.  sin 2x =-  

  5. tg x + 3ctg x = 4

 

  1. sin x--   cos x = 0

  2. 2 cos 3x + 4 sin x = 7

  3.  (ctg x – 1)(2sin  + 1) = 0

  4. 6 sin 2х + 4 sin x cos x = 1

  5. sin 2x – sin x = 0

      11) cos x + sin x = 2

 Учитель:                                                                                                        Ответы учащихся (примерные)

- Назовите те уравнения, которые простейшие.                                    (1, 4, 6)

- Как они решаются?                                                                                      (по известным формулам)

- Назовите одноименные уравнения и сводящиеся к ним.                (2, 3, 5, 7, 10)

- Какие уравнения из них однородные и сводящиеся к ним?             (7, 10)

- Каков общий вид однородных уравнений?                    (аcos x + вsin x = 0;   аcos2 x + вsin 2x = 0 ит.д.)

- Как их решаем?                                                                              (делим  обе части на  cos x ;  cos2 x и т.д.)

- Почему имеем право делить на них?            (cos x и sin x одновременно равняться нулю не могут)

- Назовите те уравнения, которые можно решить методом замены переменной.          (2, 3, 5, 10)

- Какие из этих уравнений можно решить методом разложения на множители?            (9, 11)

- Как решить уравнение № 8 ?                                                     (методом оценки левой и правой частей)

- Каким методом решить уравнение № 11 ?           (методом введения вспомогательного аргумента)

Работа в парах. Задания на карточках:  Для данных уравнений выберите соответствующий прием решения и нужную формулу, укажите их стрелкой:

Уравнения                                      Приемы, методы решения                               Формулы

2sin2 х + cos x – 1 = 0                     разложение на множители                        2cos2α = 1 +  cos 2α

3sin 2x – sin 2x = 0                         понижение степени уравнения                       sin2 α + cos2α= 1

4 cos2 x + cos 2x = 5                        преобразование суммы                                 sin 2α = 2 sinα cosα

                                                                 в произведение

sin 7x + sinx = cos 3x                   замена переменной             

Проверка через проектор на экране.

- Сделайте выводы.

Выводы: При решении тригонометрических уравнений нет единого метода, следуя которому удалось бы решить такие уравнения. Но общая цель состоит в преобразовании входящих в уравнение выражений таким образом, чтобы рассматриваемое уравнение привелось к простейшему или распалось на несколько простейших. Ведущий принцип – не терять корни!

- На изображенных на схемах множествах точек выберите те, координаты каждого из которых удовлетворяют заданному условию:

1)  сos8х  + sin8х = 1                            

2) cos8х + sin7х = 1

3) cos7х+ sin7х = - 1

                         схема а)                                схема б)                                 схема в)

- Вопрос: Найдите соответствующую схему для уравнения     cos8х+ sin9х = 1

- Сколько таких уравнений можно составить?

Ответ: Схема а). Таких уравнений можно составить бесконечно много.

V  Обсуждение и раскрытие идей решения уравнений  (Групповая работа)

 На доске записаны 6 уравнений, каждая из 6 групп выбирает 1 уравнение, обсуждает,  решает в группе.

  1. cos2 x - 2 cosx = 0

  2. 2 sin x cos x = 1

  3. сos( x) + 3 sin x = 0

  4. (2 cos x – 1) (tg x - ) = 0

  5. sin x -  cosx = 0

  6. sin2 х - 5 cosx – 5 = 0

После истечения времени представители групп выходят к доске, показывают и объясняют ход решения.  Остальные группы задают вопросы и записывают решения в тетрадь.

VI  Дифференцированная самостоятельная работа

 (на выбор учащихся предлагается 3 варианта: А –на «3», В – на «4», С – на «5»)

              Вариант А                                              Вариант В                                  Вариант С

  1. сosx =                                         1) sin2 х - 3 cosx = 0                      1)  8 sin2 х + cosx + 1 = 0

  2. 2 sin x – 1)(tg x - ) = 0            2) tg2 x – 3 tg x + 2 = 0                2) 4 sin 2х + 3 sin x cos x - cos2 x = 0

 Проверка самостоятельной работы осуществляется в форме самопроверки по готовым решениям на экране через проектор, оценку ставят сами ученики.

VII  Домашнее задание (на выбор учащихся) Вариант А - №23 (в,г);  Вариант В - №24 (а,г); Вариант С - №25 (в,г), 26 (а).  

VIII  Итог урока. Рефлексия. Оценки за урок, желательно всем. Вот уже несколько уроков вы решаете тригонометрические уравнения. Что это за уравнения? Какие виды тригонометрических уравнений вы знаете? Методы их решения?

Здесь представлен конспект к уроку на тему «Тригонометрические уравнения», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Алгебра (10 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Тригонометрические уравнения

Тригонометрические уравнения

Конспект урока алгебры и начала анализа в 11 классе. по теме: «Тригонометрические уравнения (урок обобщения и систематизации знаний)». учителя ...
Тригонометрические уравнения

Тригонометрические уравнения

Урок соревнование. Тема. «Тригонометрические уравнения». Девиз урока. :. «. Один за всех и все за одного». Ход урока:. Урок –соревнование будет ...
Тригонометрические уравнения

Тригонометрические уравнения

Захарова Людмила ВладимировнаМБОУ «Средняя общеобразовательная школа № 59» г. Барнаулаучитель математики. zlv-13@mail.ru. ...
Простейшие тригонометрические уравнения и их решения

Простейшие тригонометрические уравнения и их решения

Алгебра 10 класс. Урок. №32. Дата. 20.11.2014. Тема:. Простейшие тригонометрические уравнения и их решения. Цели и задачи:. Знать формулы по ...
Однородные тригонометрические уравнения

Однородные тригонометрические уравнения

«Однородные тригонометрические уравнения». (алгебра и начала анализа, 10 класс). Пронина Светлана Михайловна. учитель математики. ГБОУ СОШ ...
Тригонометрические преобразования, уравнения и неравенства

Тригонометрические преобразования, уравнения и неравенства

Огаркова И.И. МБОУ «Северомуйская СОШ». Тема урока:. . «Тригонометрические преобразования, уравнения и неравенства». Класс. : 10. Тип урока. ...
Арксинус. Решение уравнения sin t =a

Арксинус. Решение уравнения sin t =a

Муниципальное общеобразовательное учреждение. «Гимназия №87» города Саратова. Методическая разработка. . урока по теме. . «Арксинус. ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Урок по теме «Решение квадратных уравнений по формуле»(слайд 1). Цели урока:. познакомить с формулой корней квадратного уравнения и учить применять ...
Формула корней квадратного уравнения

Формула корней квадратного уравнения

Урок по теме. . «Формула корней квадратного уравнения. ». Организационная информация. Тема урока:. . «Формула корней квадратного уравнения. ...
Тригонометрические функции

Тригонометрические функции

Урок по теме:. «. Тригонометрические функции. ». 10 класс. Составитель - учитель математики Апарина Е.Г. с. Майкопское. ...
Задачи на составление уравнения

Задачи на составление уравнения

Задачи на составление уравнения (6 класс).  . В книге напечатаны рассказ и повесть, которые вместе занимают 70 страниц. Повесть занимает в 4 ...
Иррациональные уравнения

Иррациональные уравнения

План – конспект урока. Обобщающий урок алгебры в 11 классе по теме:. «Иррациональные уравнения». Цель:. Обобщить знания по теме: «Иррациональные ...
Рациональные уравнения

Рациональные уравнения

Автор: Жданова Мария Власовна, учитель математики,. МАОУ «Кондратовская СОШ». План-конспект открытого урока алгебры в 8 (1группа) классе в рамках ...
Иррациональные уравнения

Иррациональные уравнения

Урок по теме «Иррациональные уравнения». «Да, мир познания не гладок. И знаем мы со школьных лет. Загадок больше, чем разгадок. И поискам ...
Иррациональные уравнения

Иррациональные уравнения

Муниципальное бюджетное общеобразовательное учреждение. Пролетарская средняя общеобразовательная школа №6 г. Пролетарска Пролетарского района Ростовской ...
Иррациональные уравнения

Иррациональные уравнения

Класс: 11. Предмет: математика. Тема урока:. Иррациональные уравнения. Цели урока:. . 1. . Ввести понятие иррациональных уравнений и показать ...
Иррациональные уравнения

Иррациональные уравнения

Урок алгебры в 8 классе. Учитель: Габдукаева Физалия Каримовна. Тема урока: «Иррациональные уравнения». Цели:. Формирование навыков решения ...
Иррациональные уравнения

Иррациональные уравнения

Муниципальное казенное общеобразовательное учреждение. Великоархангельская средняя общеобразовательная школа. Конспект урока для 11 класса. ...
План урока по теме: Квадратные уравнения

План урока по теме: Квадратные уравнения

План урока по теме : Квадратные уравнения (8 класс). Автор Шаповалова Светлана Эдуардовна. Учитель МБОУ СОШ № 50 им.С.В.Марзоева г.Владикавказ. ...
Решение уравнений. Свойства уравнения

Решение уравнений. Свойства уравнения

Решение уравнений. Свойства уравнения. Предмет. Математика. Класс. 6А. Время. 1 урок (40 мин). Тип урока. : формирование новых знаний. . ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:20 мая 2016
Категория:Алгебра
Классы:
Поделись с друзьями:
Скачать конспект