- Социальное неравенство. Числовые неравенства

Конспект урока «Социальное неравенство. Числовые неравенства» по алгебре для 8 класса







Выполнила: И.Г.Габарвева

учитель математики I категории

МОУ СОШ № 46 г. Хабаровска





Урок алгебры в 8-м классе. Тема: " Социальное неравенство.

Числовые неравенства."


Цель урока: Развить математическое мышление и умения воспроизводить мысли устной и письменной речью.

Задачи:

Дидактические: 1) вывести определение числового неравенства; 2) сформулировать правила числовых неравенств.

Психологические: Развивать способность к творчеству.

Воспитательные: Усилить способность к самоуправлению.

План урока:

I. Ориентировочно-мотивационный этап.

Деятельность учителя (вопросы)

Деятельность ученика в группе (выполненные задания, ожидаемые результаты и выводы)

Первая часть нашей темы – неравенство.

О чём вы думаете, когда слышите

это слово?

Учитель старается подвести уч-ся к

понятию «социального неравенства».

Учащиеся включены в деятельность, высказывают свои мысли.

В самом общем виде неравенство означает, что люди живут в условиях, при которых они имеют неравный доступ к ограниченным ресурсам материального и духовного потребления. Выполняя качественно неравные условия труда, в разной степени удовлетворяя общественные потребности, люди иногда оказываются заняты экономически неоднородным трудом, ибо такие виды труда имеют разную оценку их общественной полезности. Социальное неравенство воспринимается и переживается многими людьми (прежде всего безработными) как проявление несправедливости. Социальное неравенство, имущественное расслоение общества, как правило, ведут к росту социальной напряженности.

Социальное неравенство – форма социальной дифференциации, при которой отдельные люди находятся на разных ступенях вертикальной иерархии и обладают неравными жизненными шансами и возможностями удовлетворения потребностей.



Т.е. неравенство это когда нет равенства.

Тогда перейдём к математике

Деятельность учителя (вопросы)

Деятельность ученика в группе (выполненные задания, ожидаемые результаты и выводы)

I. Ориентировочно-мотивационный этап.


На доске записаны пары чисел. Сравнить эти числа. Объяснить, как сравнивали.

а) 36,581 и 36,573; б) 13/18 и 17/18; в) -6 и -10; г) -5,5 и 4,99

1)Выравнивание знаний.

а) 36,581> 36,573; б) 13/18 -10; г) -5,5

Какой общий способ применим для сравнения чисел?

С помощью координатной прямой.

Постановка учебной задачи

Что получили в результате сравнения чисел?

Учитель подводит к ответу: Числовые неравенства

Дать определение понятия “числовое неравенство”.

Обсуждение в группах. Числовые неравенства. Запись отношений двух неравных чисел с помощью знаков > или называется числовым неравенством.




II. Операционально-исполнительский этап.

Решение учебной задачи (задание 1-5).

II. Операционально-исполнительский этап.


Решение учебной задачи.

Задание 1.

Разделить данные неравенства на три группы.

3,5>2,4 -8

9,45-5,03

Записать данные неравенства, обозначив левые числа буквой “а”, а правые – буквой “в”.

Связь с соц. неравенством (положение на иерархической лестнице)

Обсуждение в группах. Распределение по группам, запись с помощью а и в.

1гр.

2гр.

3гр.

а>в

а

а=в

Проговаривание.

Правило 1 Для любых чисел а и в имеет место только одно из соотношений:

а=в, а>в, ав

Задание 2.

Известно, что 3,56

Записать в виде двойного неравенства с числами и в общем виде.

Связь с соц. неравенством (положение на иерархической лестнице)

Обсуждение в группах.

Да, например 3,58; 3,66669 и т.д.

3,56

а

Проговаривание.

Правило 2 Для любых чисел а и в: а

асв


Задание 3. Какой вывод можно сделать, если: 2,98

Связь с соц. неравенством (положение на иерархической лестнице)

Обсуждение в группах.

2,98

а

Проговаривание.

Правило 3 Для любых чисел а, в, с из неравенств ав и вс следует, что ас.

Задание 4.

На одной чаше весов лежит яблоко, а на другой – вишня. И к яблоку, и к вишне добавили по одной сливе (сливы абсолютно одинаковы).

Определить положение чаш весов.

Можно ли прибавить к обеим частям верного числового неравенства одно и то же число?

Записать без слов на математическом языке.

Связь с соц. неравенством (положение на иерархической лестнице)

Обсуждение в группах. Чаша с яблоком перевесит.

Да, например 5>2, то 5+11>2+11

Если а>в и с – любое число, то а+с>в+с. (К обеим частям неравенства можно прибавить одно и то же число).

Проговаривание.

Правило 4 Для любых чисел а, в и с, если а>в, то а+с>в+с

Задание 5.

Можно ли умножить верное числовое равенство 8>4 на любое число? Изменится ли при этом знак неравенства?

Сделайте вывод.

Обсуждение в группах Умножим на 5: 40>20 верно, знак не поменялся. Умножим на -7: -56Если а Проговаривание.

Правило 5 Для любых чисел а, в и положительного числа с из неравенства а>в следует ас>вс



III. Рефлексивно-оценочный этап.

  1. Обобщение результата урока (задание 6).

  2. Самооценка.

  3. Домашнее задание (задание 8).



Задание 6

Заполнить предложенную модель.



Примеры на правила, которым подчинены

все числа

подчи

Числовые неравенства и правила для всех действительных чисел



Примеры числовых неравенств



1.







3.

2.







4.

5.










Работа в группах, учащиеся

заполняют заготовленные

учителем заранее листы

А3, затем у доски рассматриваются

модели всех групп.


Задание 7 Проведите самооценку в группах

Задание 8

Записать домашнее задание, выбрав понравившийся вариант.

1.№.3,4,5,6,7(а, в, д)
2. На определение неравенства и на каждое правило придумать по 2 примера.
3. Выполнить творческую работу. Стр. 4-6 Рассмотреть самостоятельно все свойства, привести примеры.

Общая самооценка.



Здесь представлен конспект к уроку на тему «Социальное неравенство. Числовые неравенства», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Алгебра (8 класс). Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Числовые промежутки. Решение неравенств с одной переменной

Числовые промежутки. Решение неравенств с одной переменной

МБОУ «ООШ с.Старицкое». . План-конспект урока математики. в 8 классе. на тему:. «Числовые промежутки. Решение неравенств. с одной ...
Числовые промежутки

Числовые промежутки

6. . План-конспект урока. Тема: Числовые промежутки. Ермишко Ольга Константиновна. . МОБУ СОШ № 4. . Учитель математики и информатики. ...
Числовые промежутки

Числовые промежутки

Дата:. 28.02. Предмет:. алгебра. Класс:. 8. . Тема:. Числовые промежутки. Цели:. Образовательные:. 1. Ввести понятие числовых промежутков ...
Числовые и буквенные выражения

Числовые и буквенные выражения

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ КОМИТЕТА ПО СОЦИАЛЬНОЙ ПОЛИТИКЕ И КУЛЬТУРЕ АДМИНИСТРАЦИИ Г. ИРКУТСКА. . МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ. . УЧРЕЖДЕНИЕ. ...
Числовые промежутки

Числовые промежутки

Тема методической разработки: «Рекомендации по изучению темы курса алгебры 7 класса «Числовые промежутки». . Я хочу поделиться своими рекомендациями ...
Показательные и логарифмические неравенства

Показательные и логарифмические неравенства

Тема. : Показательные и логарифмические неравенства. Цели. : - образовательная. : организовать деятельность учащихся по изучению понятия показательного ...
Числовые и алгебраические выражения или привычки, которые мы выбираем

Числовые и алгебраические выражения или привычки, которые мы выбираем

План-конспект урока алгебры 7 класса. Тип урока:. обобщения и систематизации знаний. Базовый учебник:. Ш. А. Алимов, «Алгебра 7класс». Класс:. ...
Тригонометрические преобразования, уравнения и неравенства

Тригонометрические преобразования, уравнения и неравенства

Огаркова И.И. МБОУ «Северомуйская СОШ». Тема урока:. . «Тригонометрические преобразования, уравнения и неравенства». Класс. : 10. Тип урока. ...
Уравнение и неравенства с модулем

Уравнение и неравенства с модулем

Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа №30 им. Н.Н. Колокольцова». Кемеровской области Калтанского ...
Свойства логарифмов. Логарифмические и показательные уравнения и неравенства

Свойства логарифмов. Логарифмические и показательные уравнения и неравенства

Муниципальное бюджетное образовательное учреждение. . «Средняя общеобразовательная школа № 7» им. О.Н. Мамченкова. . г. Елизово, Камчатский край. ...
Тригониметрические неравенства вида соst ≤а, соst≥а

Тригониметрические неравенства вида соst ≤а, соst≥а

Республика Казахстан, Западно-Казахстанская область,. . Теректинский район поселок Аксуат Аксуатская общая средняя общеобразовательная школа. ...
Решение логарифмические неравенства

Решение логарифмические неравенства

Конспект урока на тему «Решение логарифмические неравенства». . Подготовила учитель математики. . Муниципального общеобразовательного. ...
Показательные неравенства

Показательные неравенства

Тема : Показательные неравенства. Цели урока. :. образовательна. я: создать условия для формирования умений решать показательные неравенства;. ...
Показательные неравенства

Показательные неравенства

Тема. Показательные неравенства. Цель урока. Познакомить с. показательными неравенствами. и. методами их решения. Тип урока. Усвоение новых ...
Числовые функции

Числовые функции

Урок алгебры по теме:. . "Числовые функции» с применением компьютера. 9-й класс. Тип урока:. интегрированный урок-практикум. . Общеобразовательная ...
Уравнения и неравенства с модулем

Уравнения и неравенства с модулем

Приложение №5. . Профильная практика. Урок для 8 класса «Уравнения и неравенства с модулем». Вспомним определение модуля числа. . ...
Числовые функции их свойства и графики

Числовые функции их свойства и графики

Технологическая карта урока математики в 9 классе по теме: «Числовые функции их свойства и графики», учебник  А.Г.Мордковича. Урок развивающего контроля ...
Логарифмические неравенства

Логарифмические неравенства

МБОУ Старогородковская СОШ. План конспект урока по теме:. Логарифмические неравенства. Ерашкова Наталья Александровна, учитель математики ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:15 декабря 2016
Категория:Алгебра
Классы:
Поделись с друзьями:
Скачать конспект