- Организация поисковой и рефлексивной деятельности учащихся при решении планиметрических задач

Презентация "Организация поисковой и рефлексивной деятельности учащихся при решении планиметрических задач" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Организация поисковой и рефлексивной деятельности учащихся при решении планиметрических задач" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

ОРГАНИЗАЦИЯ ПОИСКОВОЙ И РЕФЛЕКСИВНОЙ ДЕЯТЕЛЬНОСТИ УЧАЩИХСЯ ПРИ РЕШЕНИИ ПЛАНИМЕТРИЧЕСКИХ ЗАДАЧ. Директор гимназии № 3, Заслуженный учитель России Т.Ю.Пупанова, доктор педагогических наук. заведующий кафедрой МОМ и ИТ И.Е. Малова, Брянск, 2010
Слайд 1

ОРГАНИЗАЦИЯ ПОИСКОВОЙ И РЕФЛЕКСИВНОЙ ДЕЯТЕЛЬНОСТИ УЧАЩИХСЯ ПРИ РЕШЕНИИ ПЛАНИМЕТРИЧЕСКИХ ЗАДАЧ

Директор гимназии № 3, Заслуженный учитель России Т.Ю.Пупанова, доктор педагогических наук. заведующий кафедрой МОМ и ИТ И.Е. Малова, Брянск, 2010

Задание 1. 1) Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные: Хорда АВ и диаметр MN одной и той же окружности не пересекаются, а точка пересечения прямых АМ и ВN равноудалена от концов хорды АВ на расстояние 3. Найдите радиус окружности, если АNМ = 30 (С.89, вариант 1, С
Слайд 2

Задание 1

1) Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные: Хорда АВ и диаметр MN одной и той же окружности не пересекаются, а точка пересечения прямых АМ и ВN равноудалена от концов хорды АВ на расстояние 3. Найдите радиус окружности, если АNМ = 30 (С.89, вариант 1, С4).

Попробуйте в течение 5 минут обнаружить способ решения задачи

Получилось! Почему? Не получилось… Что делать?

2) Ответьте на вопросы: “Какие фигуры образовались на чертеже?”, “Что о них известно?”, “Что можно найти по данным задачи?”, заполнив схему 1. Нанесите обнаруженные данные на рисунок. Какие фигуры образовались на чертеже? Что известно о данных фигурах? Схема 1. Что можно найти по данным задачи?  АК
Слайд 3

2) Ответьте на вопросы: “Какие фигуры образовались на чертеже?”, “Что о них известно?”, “Что можно найти по данным задачи?”, заполнив схему 1. Нанесите обнаруженные данные на рисунок

Какие фигуры образовались на чертеже?

Что известно о данных фигурах?

Схема 1

Что можно найти по данным задачи?

 АКВ  МАN

Вписанные углы АNМ, АВN, …

Секущие КМ и КN Равноб, КВ = 3

Прям-й, А = 90, N = 30

АNМ = 30, АВN = =½ АМN

АКN = =½ (МN – АВ)

АМN = 60, АМ = ½ МN 60

АМ = 60, АВN = ½ (60 + 180) = 120

120 АВ  МN

Перестроить чертеж

Составьте план решения задачи

тема

Рассмотрите еще один способ доказательства того, что треугольник МКN – равносторонний. В  МКN проведена высота NА. Из соображений симметрии, выполним дополнительное построение, соединив точки М и В. Аналогично тому, что NА высота, можно доказать, что МВ – высота  МКN. Из планиметрии известно, что
Слайд 4

Рассмотрите еще один способ доказательства того, что треугольник МКN – равносторонний.

В  МКN проведена высота NА. Из соображений симметрии, выполним дополнительное построение, соединив точки М и В.

Аналогично тому, что NА высота, можно доказать, что МВ – высота  МКN. Из планиметрии известно, что треугольник, образованный основаниями двух высот остроугольного треугольника и его вершиной, подобен данному. Значит,  МКN подобен АКВ. По условию АКВ равнобедренный, значит,  МКN – равнобедренный. Но в  МКN угол АМN = 600, значит,  МКN – равносторонний.

Задание 2. 1). Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные: Четырехугольник МNРК вписан в окружность, его диагонали пересекаются в точке А. Найдите АР, если NР = 6; МА = 9 и МР – биссектриса угла NМК и в четырехугольник МNРК можно вписать окружность (С.96, вариант 4, С4
Слайд 5

Задание 2

1). Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные: Четырехугольник МNРК вписан в окружность, его диагонали пересекаются в точке А. Найдите АР, если NР = 6; МА = 9 и МР – биссектриса угла NМК и в четырехугольник МNРК можно вписать окружность (С.96, вариант 4, С4)

Рис.2 а

Проанализируем способ организации поиска

?

Рис. 2б. 1.Четырехугольник MNPK можно вписать в окружность. 2. Диагонали пересекаются в точке А. 3. МР – биссектриса угла NMK. 4. В четырехугольник можно вписать окружность. Что можно узнать из данного условия? Что можно узнать из полученного условия? 5.Суммы противополож-ных углов равны 1800. 13. У
Слайд 6

Рис. 2б

1.Четырехугольник MNPK можно вписать в окружность

2. Диагонали пересекаются в точке А

3. МР – биссектриса угла NMK

4. В четырехугольник можно вписать окружность

Что можно узнать из данного условия?

Что можно узнать из полученного условия?

5.Суммы противополож-ных углов равны 1800

13. Учитывая условие 12, 1 + 3 = 900 , значит, N =900

6. Можно использовать свойство секущих: NA∙AK = MA∙AP

7. ˘ NP = ˘PK

8. Можно использовать свойство биссектр. ∆ МNК: NA:AK= MN: MK

10. NP = PK(равные дуги стягивают равные хорды), PK = 6, ∆NPK - равнобедренный

9. Можно использовать свойство описанного четырехугольника: NP + MK = MN + PK

11. Учитывая усл.10, MK = MN,∆ MNK- равнобедренный.

12. Учитывая усл. 3, МА – высота и медиана ∆ MNK. Надо изменить рис.

Задание 3. 1). Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные: В треугольнике АВС проведена медиана АМ. Известно, что АВ = 7, АС = 5, АМ = 2. Чему равны площади частей, на которые медиана делит треугольник? (С.103, вариант 7, С4).
Слайд 7

Задание 3

1). Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные: В треугольнике АВС проведена медиана АМ. Известно, что АВ = 7, АС = 5, АМ = 2. Чему равны площади частей, на которые медиана делит треугольник? (С.103, вариант 7, С4).

В треугольнике АВС проведена медиана АМ. Известно, что АВ = 7, АС = 5, АМ = 2. Чему равны площади частей, на которые медиана делит треугольник? (С.103, вариант 7, С4). Нужно знать площадь всего треугольника, т.к. части, на которые медиана делит тр-к, равновелики. Что нужно знать, чтобы найти площадь
Слайд 8

В треугольнике АВС проведена медиана АМ. Известно, что АВ = 7, АС = 5, АМ = 2. Чему равны площади частей, на которые медиана делит треугольник? (С.103, вариант 7, С4).

Нужно знать площадь всего треугольника, т.к. части, на которые медиана делит тр-к, равновелики

Что нужно знать, чтобы найти площадь всего треугольника, зная две его стороны?

Нужно знать длину третьей стороны или угол между ними.

Зная две стороны и медиану, проведенную к третьей стороне, найти третью сторону.

Зная три стороны треугольника, найдите его площадь.

3. Зная площадь треугольника, найти площади частей, на которые делит медиана треугольник, учитывая, что части равновелики.

Стандартное дополнительное построение: продолжить медиану на свою длину. Сумма квадратов диагоналей равна сумме квадратов всех его сторон. 1 2 3
Слайд 9

Стандартное дополнительное построение: продолжить медиану на свою длину

Сумма квадратов диагоналей равна сумме квадратов всех его сторон

1 2 3

Задание 4. Поскольку величина не является привычной, обозначьте ее какой-нибудь буквой и временно отбросьте. Изобразите фигуры, участвующие в задаче без этой величины, и нанесите на рисунок оставшиеся данные. Выясните свойства треугольника, у которого высота и медиана, проведенные из одной и той же
Слайд 10

Задание 4

Поскольку величина не является привычной, обозначьте ее какой-нибудь буквой и временно отбросьте. Изобразите фигуры, участвующие в задаче без этой величины, и нанесите на рисунок оставшиеся данные. Выясните свойства треугольника, у которого высота и медиана, проведенные из одной и той же вершины треугольника, делят его угол на три равные части ( №349, уч-к Л.С.Атанасян, 7 – 9 кл), отвечая на вопросы: “Какие фигуры образовались на чертеже?”, “Что о них известно?”, “Что можно узнать по данным задачи?”, “Что можно узнать по полученным условиям?”. (Вопросы и ответы занесите в таблицу).

В треугольнике АВС высота СН и медиана СК делят угол АСВ на три равных угла. Длина отрезка СО, где О – центр вписанной окружности, равна . Найдите площадь треугольника АВС. Попробуйте обнаружить способ решения задачи. ∆ АСК ∆ НСВ. Вывод: если в треугольнике высота и медиана, проведенные из одной вер
Слайд 11

В треугольнике АВС высота СН и медиана СК делят угол АСВ на три равных угла. Длина отрезка СО, где О – центр вписанной окружности, равна . Найдите площадь треугольника АВС.

Попробуйте обнаружить способ решения задачи

∆ АСК ∆ НСВ

Вывод: если в треугольнике высота и медиана, проведенные из одной вершины, делят угол на три равные части, то…

1. СН – биссектриса и высота

2. ∆ АСК- равнобедренный, СН - медиана

3. ∆НСВ – прямоугольный, СК – биссектриса; КВ в два раза больше КН

4. Можно исп. св-во биссектрисы. Тогда СВ в 2 раза больше СН, значит, СВН = 300

5. Тогда НСВ = 600,а, значит, НСК = КСВ = 300

6. Тогда АСВ = 900, т.е.∆ АСВ- прямоугольный

треугольник является прямоугольным и в нем острые углы 300 и 600.

В треугольнике АВС высота СН и медиана СК делят угол АВС на три равных угла. Длина отрезка СО, где О – центр вписанной окружности, равна . Найдите площадь треугольника АВС. О
Слайд 12

В треугольнике АВС высота СН и медиана СК делят угол АВС на три равных угла. Длина отрезка СО, где О – центр вписанной окружности, равна . Найдите площадь треугольника АВС.

О

Учитель высшей категории СОШ №3 г. Стародуба И.А. Коваленко г.Стародуб 2010. Задачи про вневписанную окружность
Слайд 13

Учитель высшей категории СОШ №3 г. Стародуба И.А. Коваленко г.Стародуб 2010

Задачи про вневписанную окружность

А В С О1 О2 О3. Определение. Окружность, касающаяся одной стороны треугольника и продолжений двух других его сторон, называется вневписанной. Теорема. Центр вневписанной окружности лежит на пересечении биссектрис внешних углов при вершинах касаемой стороны и биссектрисы угла при третьей вершине.
Слайд 14

А В С О1 О2 О3

Определение. Окружность, касающаяся одной стороны треугольника и продолжений двух других его сторон, называется вневписанной.

Теорема. Центр вневписанной окружности лежит на пересечении биссектрис внешних углов при вершинах касаемой стороны и биссектрисы угла при третьей вершине.

1. Прочитайте задачу. Найдите произведение радиусов вневписанных окружностей треугольника со сторонами 4, 5, 6. (с.125, вариант 15, С4). Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные. Задание5. Проверьте, все ли данные нанесены на чертеж. 6 5 4
Слайд 15

1. Прочитайте задачу. Найдите произведение радиусов вневписанных окружностей треугольника со сторонами 4, 5, 6. (с.125, вариант 15, С4). Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные.

Задание5

Проверьте, все ли данные нанесены на чертеж

6 5 4

Составить уравнение помогает прием: выразить площадь одной и той же фигуры двумя способами. Р1 К1 К2 К3 r1 r2 r3. 1. Прочитайте задачу. Найдите произведение радиусов вневписанных окружностей треугольника со сторонами 4,5,6. (с.125, вариант 15, С4). Выполните стандартное дополнительное построение: це
Слайд 16

Составить уравнение помогает прием: выразить площадь одной и той же фигуры двумя способами

Р1 К1 К2 К3 r1 r2 r3

1. Прочитайте задачу. Найдите произведение радиусов вневписанных окружностей треугольника со сторонами 4,5,6. (с.125, вариант 15, С4)

Выполните стандартное дополнительное построение: центр вписанной (вневписанной) в треугольник окружности соедините с точками касания.

Выполните еще одно стандартное дополнительное построение: центр вписанной (вневписанной) в треугольник окружности соедините с вершинами треугольника.

Что о них известно или может быть найдено?

Данные задачи расположены разрозненно, поэтому выполняют дополнительные построения

Достаточно ли в них данных, чтобы провести вычисления?

Как поступают в этом случае?

Площадь какой фигуры можно выразить двумя способами?

План: 1. Выразить S АО1ВС как сумму верхнего и нижнего тр-ка и как сумму левого и правого тр-ка  r1. 2. Найти анал-но r2 и r3. 3. Ответить на вопрос задачи

Задание 6. Прочитайте задачу: Прямая отсекает от сторон прямого угла отрезки 3 и 4. Найдите радиус окружности, касающейся этой прямой и сторон угла. Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные. К G L F E M. Сравните свой рисунок с предложенным
Слайд 17

Задание 6

Прочитайте задачу: Прямая отсекает от сторон прямого угла отрезки 3 и 4. Найдите радиус окружности, касающейся этой прямой и сторон угла. Изобразите фигуры, участвующие в задаче, и нанесите на рисунок все данные.

К G L F E M

Сравните свой рисунок с предложенным

План решения задачи 1. Найти площадь и полупериметр тр-ка АВС ⇒ радиус вписанной окружности. 2. Используя метод площадей, найти радиус вневписанной окружности. 3. Ответить на вопрос задачи. Случай 1 ∆ АВС Окр. (О1; r =О1К). 2.Вписанная в ∆АВС. 3.Формула связи между площадью тр-ка и радиусом вписанно
Слайд 18

План решения задачи 1. Найти площадь и полупериметр тр-ка АВС ⇒ радиус вписанной окружности. 2. Используя метод площадей, найти радиус вневписанной окружности. 3. Ответить на вопрос задачи.

Случай 1 ∆ АВС Окр. (О1; r =О1К)

2.Вписанная в ∆АВС.

3.Формула связи между площадью тр-ка и радиусом вписанной окр.

1.Прямоугольный, <С = 900, АС=3,ВС=4

4. АВ = 5 по теореме Пифагора

5. Учитывая 4, SАВС; р

6. Учитывая 3 и 5, r = S∆/p

Случай 2

Данные задачи расположены разрозненно, поэтому выполняют стандартные дополнительные построения

Достаточно ли данных, чтобы провести вычисления?

Составить уравнение помогает метод площадей: выразить площадь известного треугольника как сумму или разность площадей нескольких треугольников, основаниями которых являются стороны известного треугольника

Список похожих презентаций

Активизация познавательной деятельности при обучении математике

Активизация познавательной деятельности при обучении математике

. Народная Классическая Педагогическая Цирковая (эстрадная) Спортивная. Группировка Классификация Систематизация Ассоциация Аналогия Рифмитизация ...
«Решение задач с помощью пропорций»

«Решение задач с помощью пропорций»

Найти значение Х: Х:3=4:6 5:Х=2:6 7:3=Х:18 Устная работа. Указать вид пропорциональной зависимости:. Какова зависимость пути от времени? Какова зависимость ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
Аксиомы стереометрии Решение задач

Аксиомы стереометрии Решение задач

Через любые две точки пространства проходит единственная прямая. Через любые три точки пространства, не принадлежащие одной прямой, проходит единственная ...
Алггоритм. Решение задач

Алггоритм. Решение задач

Задача 1. В урне хранится некоторое количество чёрных и белых шаров. Требуется разложить эти шары по двум корзинам чёрного и белого цвета: белые шары ...
«Решение задач по математике»

«Решение задач по математике»

10 февраля. В классе. Задача условие вопрос решение ответ. Быстро и правильно считать. Правильно записывать решение задачи. Кричать и сердиться, когда ...
Активизация мыслительной деятельности на уроках математики

Активизация мыслительной деятельности на уроках математики

Активные формы урока. Урок-лекция. Урок-консультация. Урок-практикум Урок-семинар Урок-зачёт. урок-лекция. Зачёт №2 по геометрии в 11 классе 1.Объясните, ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
«Правильные и неправильные дроби»

«Правильные и неправильные дроби»

«Учёные Грузии нашли золото в составе крови человека». Из журнальной статьи. “ЗОЛОТАЯ КРОВЬ” (ЭДУАРД АСАДОВ). Не так давно учёные открыли Пусть небольшой, ...
«Параллельность прямых и плоскостей»

«Параллельность прямых и плоскостей»

ABCD – трапеция, AD , E и F – середины AB и CD соответственно. Докажите, что EF ǁ α. α. α. α. α. A B C D α. Через вершины А и С параллелограмма ABCD ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
«Доли и дроби»

«Доли и дроби»

1. Доли. Разделы. 2. Сравнение долей. 3. Нахождение доли числа. 5. Проценты. 6. Дроби. 7. Сравнение дробей. 4. Нахождение числа по доле. 8. Нахождение ...
«Действия с дробями», «Нахождение дроби и процентов от числа»

«Действия с дробями», «Нахождение дроби и процентов от числа»

Систематизация знаний по темам: «Действия с дробями», «Нахождение дроби и процентов от числа», Отработка практических навыков выполнения действий ...

Конспекты

Алгоритм решения задачи на нахождение целого и частей

Алгоритм решения задачи на нахождение целого и частей

. Тимошенкова. Ирина Викторовна. Учитель начальных классов. МБ НОУ «Гимназия № 70». Г. Новокузнецк. Алгоритм. решения задачи. ...
Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:27 сентября 2019
Категория:Математика
Содержит:18 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации