Презентация "Теорема Пифагора" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12

Презентацию на тему "Теорема Пифагора" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 12 слайд(ов).

Слайды презентации

Теорема Пифагора Слайд: 1
Слайд 1
Смирнова Татьяна Григорьевна. Учитель математики, завуч школы №516
Слайд 2

Смирнова Татьяна Григорьевна

Учитель математики, завуч школы №516

Теорема Пифагора. Формулировка теоремы Проверь себя Задачи с практическим содержанием Задачи Древнего Китая
Слайд 3

Теорема Пифагора

Формулировка теоремы Проверь себя Задачи с практическим содержанием Задачи Древнего Китая

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. А С а в В с а² + в² = с²
Слайд 4

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

А С а в В с а² + в² = с²

Задачи с практическим содержанием. 1. Лестница длиной 13 метров приставлена к стене так, что расстояние до нижнего конца лестницы до стены равно 5 метров. На какой высоте от земли находится верхний конец лестницы? Чертеж Решение 13 м h. h² = 13² - 5² h² = 144 h = 12 Ответ: 12 метров
Слайд 5

Задачи с практическим содержанием

1. Лестница длиной 13 метров приставлена к стене так, что расстояние до нижнего конца лестницы до стены равно 5 метров. На какой высоте от земли находится верхний конец лестницы?

Чертеж Решение 13 м h

h² = 13² - 5² h² = 144 h = 12 Ответ: 12 метров

2. Для установки мачты телевизионной антенны изготовлены тросы длиной 17 метров. Тросы крепятся на мачте на высоте 15 метров. На каком расстоянии от мачты надо укрепить концы троса? 17 м 15 м m. m ² = 17 ² - 15 ² m ² =64 m = 8 Ответ: 8 метров
Слайд 6

2. Для установки мачты телевизионной антенны изготовлены тросы длиной 17 метров. Тросы крепятся на мачте на высоте 15 метров. На каком расстоянии от мачты надо укрепить концы троса?

17 м 15 м m

m ² = 17 ² - 15 ² m ² =64 m = 8 Ответ: 8 метров

3. Вертикальная мачта поддерживается четырьмя канатами, прикрепленными к ней на расстоянии 16 метров от земли и к земле на расстоянии 12 метров от основания мачты. Сколько метров каната потребовалось для укрепления мачты, если на узлы пошло 10 метров? 12 м 16 м. m ² = 16 ² + 12 ² m ² = 400 m = 20 20
Слайд 7

3. Вертикальная мачта поддерживается четырьмя канатами, прикрепленными к ней на расстоянии 16 метров от земли и к земле на расстоянии 12 метров от основания мачты. Сколько метров каната потребовалось для укрепления мачты, если на узлы пошло 10 метров?

12 м 16 м

m ² = 16 ² + 12 ² m ² = 400 m = 20 20 · 4 +10 = 90 Ответ: 90 метров

4. Длина маятника АМ=1 м, высота его подъема при отклонении в точку В на некоторый угол равна СА=10 см. Найдите расстояние от точки В до прямой МА. x ² = 100 ² - 90 ² x ² = 1900 x ≈ 43,6 Ответ: 43,6 см. 1 подсказка: Рассмотреть прямоугольный треугольник МВС. 2 подсказка: Пусть ВС = х см. По условию
Слайд 8

4. Длина маятника АМ=1 м, высота его подъема при отклонении в точку В на некоторый угол равна СА=10 см. Найдите расстояние от точки В до прямой МА.

x ² = 100 ² - 90 ² x ² = 1900 x ≈ 43,6 Ответ: 43,6 см

1 подсказка: Рассмотреть прямоугольный треугольник МВС.

2 подсказка: Пусть ВС = х см. По условию МВ=100см, МС=90 см.

Пусть ВС = х см.

Задачи Древнего Китая. Наиболее ранние из дошедших до нас китайских математических текстов относятся к концу 1 тысячелетия до нашей эры. Основным научным трудом была «Математика в девяти книгах».Она предназначалась для всех, кому требовались математические знания: землемерам, чиновникам, инженерам,
Слайд 9

Задачи Древнего Китая

Наиболее ранние из дошедших до нас китайских математических текстов относятся к концу 1 тысячелетия до нашей эры. Основным научным трудом была «Математика в девяти книгах».Она предназначалась для всех, кому требовались математические знания: землемерам, чиновникам, инженерам, торговцам. По существу это сборник из 246 задач без вводных текстов и предварительных разъяснений. Каждый раз вначале формулируется задача, затем сообщается ответ и в сжатой форме указывается способ решения. Рассмотрим две задачи из девятой книги «Математики в девяти книгах».

Задача 6 Задача 13

Имеется водоем со стороной в 1 чжан (=10 чи). В центре его растет камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснется его. Спрашивается: какова глубина воды и какова длина камыша? Ответ: глубина воды 12 чи, длина камыша 13 чи. Пусть глубина воды х(смотри
Слайд 10

Имеется водоем со стороной в 1 чжан (=10 чи). В центре его растет камыш, который выступает над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснется его. Спрашивается: какова глубина воды и какова длина камыша?

Ответ: глубина воды 12 чи, длина камыша 13 чи.

Пусть глубина воды х(смотри рисунок). Получим прямоугольный треугольник, у которого один катет х, второй катет 5, а гипотенуза х+1. Используем теорему Пифагора: х ²+5 ²=(х+1) ². Решим уравнение: х ²+25=х ²+2х+1 24=2х х=12

Имеется бамбук высотой в 1 чжан (=10 чи). Вершину его согнули так, что она касается земли на расстоянии 3 чи от корня. Спрашивается: какова высота после сгибания? Пусть высота бамбука после сгибания х (смотри рисунок). Получим прямоугольный треугольник, у которого один катет х, второй катет 3, а гип
Слайд 11

Имеется бамбук высотой в 1 чжан (=10 чи). Вершину его согнули так, что она касается земли на расстоянии 3 чи от корня. Спрашивается: какова высота после сгибания?

Пусть высота бамбука после сгибания х (смотри рисунок). Получим прямоугольный треугольник, у которого один катет х, второй катет 3, а гипотенуза 10-х. Используем теорему Пифагора: х ²+3 ²=(10-х) ². Решим уравнение: х ²+9=100-20х+ х ² 20х=91 х = 4,55

Ответ: высота после сгибания 4,55 чи.

Спасибо за внимание! Надеюсь, что вам было интересно!
Слайд 12

Спасибо за внимание! Надеюсь, что вам было интересно!

Список похожих презентаций

Теорема Пифагора в картинках

Теорема Пифагора в картинках

Мальчик прошел от дома по направлению на восток 800 м. Затем повернул на север и прошел 600 м. На каком расстоянии от дома оказался мальчик? 800 600 ...
Теорема Пифагора 7-9 класс

Теорема Пифагора 7-9 класс

Тема проекта Теорема. Творческое название проекта «Истина где-то рядом...». Участники проекта: Андриянов Станислав Носова Ксения. Пифагора. Дидактические ...
Теорема Пифагора для прямоугольного треугольника

Теорема Пифагора для прямоугольного треугольника

Пифагор Самосский — древнегреческий философ, математик и мистик, создатель религиозно -философской школы пифагор - ейцев. Историю жизни Пифагора трудно ...
Теорема Пифагора вне школьной программы

Теорема Пифагора вне школьной программы

Введение. Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с его теоремой. Пожалуй, даже те, кто в своей жизни навсегда распрощался ...
Теорема Пифагора доказательство

Теорема Пифагора доказательство

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов. Елекова Э.М. Республика Алтай. Смотри и докажи! (∆ АВС- прямоугольный ...
Теорема Пифагора для треугольника

Теорема Пифагора для треугольника

Теорема Пифагора. Легенды и факты о Пифагоре. Авторы презентации : Власенко Д., Белохвостова Т., Слизкова П., Матвеева П., Муравьева А. Пифагорейская ...
Теорема Пифагора и её применение

Теорема Пифагора и её применение

Проблема исследования:. Показать исторические истоки теоремы, умение применять полученные знания к решению прикладных задач. Цель исследования:. Обобщить ...
Теорема Пифагора и ее история

Теорема Пифагора и ее история

Пребудет Вечной истина, как скоро Все познает слабый человек! И ныне теорема Пифагора Верна, как и в его далекий век. Обильно было жертвоприношение ...
Теорема Пифагора: доказательства

Теорема Пифагора: доказательства

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Формулировка теоремы. a b c. Доказательство. Различные виды доказательства ...
Теорема Пифагора и ее применение при решении задач

Теорема Пифагора и ее применение при решении задач

Цель урока:. Повторить теорему Пифагора; Применять теорему Пифагора при решении простейших задач геометрии; Рассмотреть исторические задачи; Рассмотреть ...
Теорема Пифагора: числа и история

Теорема Пифагора: числа и история

(ок. 580 – ок. 500 г. до н.э.). Пифагор Самосский. О жизни Пифагора известно немного. Он родился в 580 г. до н.э. в Древней Греции на острове Самос, ...
Теорема Пифагора. И её доказательства

Теорема Пифагора. И её доказательства

"Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах." Простейшее доказательство ...
Теорема Пифагора. история, доказательства, применение

Теорема Пифагора. история, доказательства, применение

Содержание. Введение История теоремы Неалгебраические доказательства теоремы Алгебраические доказательства теоремы Применение теоремы Заключение Литература. ...
Теорема Пифагора 2

Теорема Пифагора 2

План. Введение Биография Пифагора Простейшее доказательство теоремы Древнекитайское доказательство Доказательство Евклида Доказательство теоремы Пифагора ...
Теорема Пифагора

Теорема Пифагора

Только одно божество может обладать всеобъемлющей мудростью, а человеку свойственно лишь стремиться к ней. «Только одно божество может обладать всеобъемлющей ...
Теорема Пифагора

Теорема Пифагора

Вопрос - ответ. Угол, градусная мера которого равна 90° ПРЯМОЙ Сторона, лежащая напротив прямого угла треугольника ГИПОТЕНУЗА Треугольник, квадрат, ...
Теорема Пифагора

Теорема Пифагора

Древний Китай Египет Карикатуры. Из книги Чу-пей. В этом сочинении говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить ...
Теорема Пифагора

Теорема Пифагора

открыть формулу, выражающую зависимость между гипотенузой и катетами прямоугольного треугольника; формировать умение применять соотношения, позволяющие ...
Теорема Пифагора

Теорема Пифагора

Цель. Обобщить и систематизировать знания учащихся по теме, показать исторические истоки теоремы, учить учащихся применять полученные знания к решению ...
Площади фигур. Теорема Пифагора

Площади фигур. Теорема Пифагора

Установите соответствие между фигурой и формулой площади. . Задача № 1. В треугольнике два угла равны 45 и 90 , а большая сторона 12 см. Найдите 2 ...

Конспекты

Теорема Пифагора

Теорема Пифагора

Тема урока:. Теорема Пифагора. Цели урока:. Образовательные: сформулировать и доказать теорему Пифагора,. . рассмотреть основные следствия из ...
Теорема Пифагора

Теорема Пифагора

Урок геометрии в 8-м классе: "Теорема Пифагора". Цели урока:. Образовательная:. обеспечить понимание доказательства теоремы Пифагора и ее применение ...
Теорема Пифагора

Теорема Пифагора

VII ВСЕРОССИЙСКИЙ КОНКУРС. ПРОФЕССИОНАЛЬНОГО МАСТЕРСТВА ПЕДАГОГОВ. «МОЙ ЛУЧШИЙ УРОК». естественно-научное направление. Муниципальное ...
Теорема Пифагора

Теорема Пифагора

Тема урока по геометрии в 8-м классе: "Теорема Пифагора». Цели урока:. Образовательная:. обеспечить понимание доказательства теоремы Пифагора ...
Теорема Пифагора

Теорема Пифагора

План-конспект урока по теме «Теорема Пифагора» . Цели урока:. . . Изучить некоторые исторические сведения о Пифагоре и его теореме, доказательство ...
Теорема Пифагора

Теорема Пифагора

План – конспект урока геометрии в 8 классе. по теме «Теорема Пифагора». Учитель: Платонова Валентина Николаевна. Цель урока. : изучить доказательство ...
Теорема Пифагора

Теорема Пифагора

Тема: Теорема Пифагора. «Кто смолоду делает, думает сам. тот становится потом надежнее. крепче, умнее ». В. Шукшин. Цель обучения :. ...
Теорема Пифагора. Решение задач

Теорема Пифагора. Решение задач

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа с. Липовка Духовницкого района Саратовской области». Урок ...
Теорема Пифагора

Теорема Пифагора

Урок по геометрии по теме: «Теорема. Пифагора». Подготовила: Сеитова Лариса Ромазановна, учитель математики муниципального казённого общеобразовательного ...
Теорема Пифагора

Теорема Пифагора

Государственное бюджетное образовательное учреждение г.Москвы. . средняя общеобразовательная школа №1968. Урок для 8 класса по теме ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:19 сентября 2019
Категория:Математика
Содержит:12 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации