- Теорема Пифагора: числа и история

Презентация "Теорема Пифагора: числа и история" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "Теорема Пифагора: числа и история" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

«Теорема Пифагора». Выполнила: Кулясова Ангелина Проверила: учительгеометрии Светлана Петровна
Слайд 1

«Теорема Пифагора»

Выполнила: Кулясова Ангелина Проверила: учительгеометрии Светлана Петровна

(ок. 580 – ок. 500 г. до н.э.). Пифагор Самосский
Слайд 2

(ок. 580 – ок. 500 г. до н.э.)

Пифагор Самосский

О жизни Пифагора известно немного. Он родился в 580 г. до н.э. в Древней Греции на острове Самос, который находится в Эгейском море у берегов Малой Азии, поэтому его называют Пифагором Самосским. Родился Пифагор в семье резчика по камню, который сыскал скорее славу, чем богатство. Ещё в детстве он п
Слайд 3

О жизни Пифагора известно немного. Он родился в 580 г. до н.э. в Древней Греции на острове Самос, который находится в Эгейском море у берегов Малой Азии, поэтому его называют Пифагором Самосским. Родился Пифагор в семье резчика по камню, который сыскал скорее славу, чем богатство. Ещё в детстве он проявлял незаурядные способности, и когда подрос, неугомонному воображению юноши стало тесно на маленьком острове. Пифагор перебрался в город Милеет и стал учеником Фалеса, которому в то время шёл восьмой десяток. Мудрый учёный посоветовал юноше отправиться в Египет. Когда Пифагор постиг науку египетских жрецов, то засобирался домой, чтобы там создать свою школу. Он поселился в одной из греческих колоний Южной Италии в городе Кротоне. Там Пифагор организовал тайный союз молодёжи из представителей аристократии. Каждый вступающий отрекался от своего имущества и давал клятву хранить в тайне учения основателя. Пифагорейцы, как их позднее стали называть, занимались математикой, философией, естественными науками. В школе существовал декрет, по которому авторство всех математических работ приписывалось учителю.

ПИФАГОР САМОССКИЙ (ок. 580 – ок. 500 г. до н.э.)

c2 = a2 + b2. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.
Слайд 4

c2 = a2 + b2

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

a b. Обозначим площадь квадрата S. Достроим прямоугольный треугольник до квадрата. с 1 2 M N P K. Квадрат состоит из четырехугольника MNPK и четырех равных треугольников. Треугольники равны по двум катетам. А так как (сумма острых углов прямоугольного треугольника), то MNPK – квадрат. Гипотенузы тре
Слайд 5

a b

Обозначим площадь квадрата S.

Достроим прямоугольный треугольник до квадрата.

с 1 2 M N P K

Квадрат состоит из четырехугольника MNPK и четырех равных треугольников.

Треугольники равны по двум катетам.

А так как (сумма острых углов прямоугольного треугольника), то MNPK – квадрат.

Гипотенузы треугольников равны, поэтому MNPK – ромб.

Тогда его площадь равна с2.

Площадь каждого треугольника равна .

Поэтому Или Откуда

Формулировка. Другими словами, площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. = +
Слайд 6

Формулировка

Другими словами, площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

= +

Формулировка обратной теоремы. Теорема, обратная к теореме Пифагора, также справедлива. Она позволяет проверить, является ли тот или иной треугольник прямоугольным. Этим пользовались землемеры и строители Древнего Египта: они размечали прямые углы с помощью веревки, разделенной узлами на 12 равных к
Слайд 7

Формулировка обратной теоремы

Теорема, обратная к теореме Пифагора, также справедлива. Она позволяет проверить, является ли тот или иной треугольник прямоугольным. Этим пользовались землемеры и строители Древнего Египта: они размечали прямые углы с помощью веревки, разделенной узлами на 12 равных кусков. Прямоугольный треугольник со сторонами 3, 4, 5 называется «египетским», а тройки (a, b, c) натуральных чисел, удовлетворяющие уравнению c2 = a2 + b2, т. е. служащие длинами сторон прямоугольных треугольников, Пифагоровыми.

Доказательства На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии. Разумеет
Слайд 8

Доказательства На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии. Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например с помощью дифференциальных уравнений).

Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы (для треугол
Слайд 9

Простейшее доказательство теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы (для треугольника АВС квадрат, построенный на гипотенузе АС содержит 4 исходных треугольника, а квадраты, построенные на катетах – по 2 треугольника) Теорема доказана.

Из подобия треугольников ACD и CAB следует: Из подобия треугольников ABC и DCB следует: Сложив почленно равенства, получим: Доказательство, основанное на теории подобия
Слайд 10

Из подобия треугольников ACD и CAB следует:

Из подобия треугольников ABC и DCB следует:

Сложив почленно равенства, получим:

Доказательство, основанное на теории подобия

Доказательство Анариция, основанное на том, что равносоставленные фигуры равновелики. Чертеж к доказательству Анариция. Если на гипотенузе и катетах прямоугольного треугольника построить соответствующие квадраты, то квадрат, построенный на гипотенузе, равновелик сумме квадратов, построенных на катет
Слайд 11

Доказательство Анариция, основанное на том, что равносоставленные фигуры равновелики

Чертеж к доказательству Анариция

Если на гипотенузе и катетах прямоугольного треугольника построить соответствующие квадраты, то квадрат, построенный на гипотенузе, равновелик сумме квадратов, построенных на катетах.

Доказательство основывается на том, что равносоставленные фигуры равновелики: квадраты, построенные на катетах и гипотенузе, разбиваются на многоугольники так, что каждому многоугольнику из состава квадрата на гипотенузе соответствует равный многоугольник одного из квадратов на катетах. Достаточно посмотреть на чертеж, чтобы понять все доказательство (см. рис.). Это доказательство дал багдадский математик и астроном X в. ан-Найризий (латинизированное имя – Анариций).

Оригинальное доказательство
Слайд 12

Оригинальное доказательство

Доказательство Темпельгофа
Слайд 13

Доказательство Темпельгофа

Доказательство Хоукинсa
Слайд 16

Доказательство Хоукинсa

Доказательство индийского математика Бхаскари
Слайд 17

Доказательство индийского математика Бхаскари

Доказательство Евклида
Слайд 18

Доказательство Евклида

Геометрическое доказательство Евклида
Слайд 19

Геометрическое доказательство Евклида

Историческая справка. Пожалуй, это самая популярная теорема геометрии, сделавшая Пифагора наиболее знаменитым математиком. Однако, само утверждение было открыто задолго до него, но в современной истории науки считается, что Пифагор дал ему первое логически стройное доказательство. Теорема Пифагора з
Слайд 20

Историческая справка

Пожалуй, это самая популярная теорема геометрии, сделавшая Пифагора наиболее знаменитым математиком. Однако, само утверждение было открыто задолго до него, но в современной истории науки считается, что Пифагор дал ему первое логически стройное доказательство. Теорема Пифагора заслужила место в «Книге рекордов Гиннесса» как получившая наибольшее число доказательств. Американский автор Э. Лумис в книге «Пифагорово предложение», вышедшей в 1940 г., собрал 370 разных доказательств! Однако принципиально различных идей в этих доказательствах используется не так уж много.

Пифагорова головоломка. Из семи частей квадрата составить снова квадрат, прямоугольник, равнобедренный треугольник, трапецию. Квадрат разрезается так: E, F, K, L – середины сторон квадрата, О – центр квадрата, ОМ ḻ EF, NF ḻ EF.
Слайд 21

Пифагорова головоломка

Из семи частей квадрата составить снова квадрат, прямоугольник, равнобедренный треугольник, трапецию. Квадрат разрезается так: E, F, K, L – середины сторон квадрата, О – центр квадрата, ОМ ḻ EF, NF ḻ EF.

Итак, Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдём: Катеты в квадрат возводим, Сумму степеней находим – И таким простым путём К результату мы придём. Ч.т.д.
Слайд 22

Итак, Если дан нам треугольник И притом с прямым углом, То квадрат гипотенузы Мы всегда легко найдём: Катеты в квадрат возводим, Сумму степеней находим – И таким простым путём К результату мы придём. Ч.т.д.

Самое ценное в математике - это возможность быстрого приложения теории к практике
Слайд 23

Самое ценное в математике - это возможность быстрого приложения теории к практике

Список похожих презентаций

«Моя математика» 1- класс - числа 0-10

«Моя математика» 1- класс - числа 0-10

Цели урока: Закрепить: навыки счета в пределах10; состав чисел 2-10; умение записывать числа арабскими и римскими цифрами; умение сравнивать выражения; ...
"Взаимно обратные числа"

"Взаимно обратные числа"

Цели урока:. ввести понятие взаимно обратных чисел; сформировать умение находить взаимно обратные числа при решении упражнений; повторить правило ...
«Действия с дробями», «Нахождение дроби и процентов от числа»

«Действия с дробями», «Нахождение дроби и процентов от числа»

Систематизация знаний по темам: «Действия с дробями», «Нахождение дроби и процентов от числа», Отработка практических навыков выполнения действий ...
Cпособы доказательства теоремы Пифагора

Cпособы доказательства теоремы Пифагора

a2+b2=c2 c a b П. Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести тем самым ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Умножение дробей, нахождение дроби от числа"

"Умножение дробей, нахождение дроби от числа"

. Выполнить умножение: 3 8 ∙2=. Выполнить умножение: 3 7 ∙ 2 9 =. 2 21. Выполнить умножение: 5∙1 7 15 =. 7 1 3. Вычислить площадь квадрата со стороной ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
"Доли и дроби"

"Доли и дроби"

Семья Долиных:. Бабушка Доля Дедушка Доль Внуки Дробик и Долюша. Бабушка доля очень любит печь пироги. Дробик пришел с фермы очень голодный. разрезал ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
«Решение задания С1 ЕГЭ по информатике и ИКТ»

«Решение задания С1 ЕГЭ по информатике и ИКТ»

2 балла. Решение задания С1 ЕГЭ по информатике и ИКТ.  Кунина В.В. область I  область II. 0 x y y = x+2 y2 + x2 = 25 y2 + x2  25 y  0 x  0 область ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...

Конспекты

Взаимно простые числа

Взаимно простые числа

Математика – 6 класс. . Тема урока. : «Взаимно простые числа». Автор: Хамидуллин Алмаз Нуртдинович. . Учитель математики. . МБОШИ ...
Взаимно простые числа

Взаимно простые числа

НОД. Взаимно простые числа. Цель урока:. закрепить знание о делителе числа, научить учащихся находить наибольший общий делитель, развивать вычислительные ...
Взаимно простые числа

Взаимно простые числа

Разработана учителем математики МБОУ-СОШ №64 города Тулы Платоновой Наталией Сергеевной. . Разработка урока математики по технологической карте. ...
Взаимно обратные числа

Взаимно обратные числа

Урок 59. Взаимно обратные числа. Цели:. отрабатывать навык нахождения чисел, обратных данным,. умения. решать уравнения нового типа; формировать. ...
Алгоритм письменного деления многозначного числа на двузначное, трёхзначное число

Алгоритм письменного деления многозначного числа на двузначное, трёхзначное число

Открытый урок математики 4 класс. Тема: Алгоритм письменного деления многозначного числа на двузначное, трёхзначное число. Цель:. формирование ...
Арифметические действия с положительными и отрицательными числами

Арифметические действия с положительными и отрицательными числами

. Муниципальное бюджетное общеобразовательное учреждение«Лицей №2». Методическая разработка урокаматематики. «Арифметические действия ...
Взаимно обратные числа

Взаимно обратные числа

ПЛАН-КОНСПЕКТ УРОКА. . Взаимно обратные числа. . ФИО (полностью). . . Гаврилова Марина Александровна. . . . Место работы. ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...
В мир одночленов и многочленов

В мир одночленов и многочленов

Алгебра 7 класс. Урок – путешествие «В мир одночленов и многочленов». Цели:. обеспечить повторение и систематизацию материала темы; создать ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 мая 2019
Категория:Математика
Содержит:23 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации