- Вписанная и описанная окружность

Презентация "Вписанная и описанная окружность" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8

Презентацию на тему "Вписанная и описанная окружность" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 8 слайд(ов).

Слайды презентации

Вписанная и описанная. окружность
Слайд 1

Вписанная и описанная

окружность

Вписанная окружность. Центр вписанной окружности – середина серединного перпендикуляра к основаниям Если О- центр вписанной окружности, то СОD =90. 3.Если в трапецию вписана окружность, то AB+CD=BC+AD 4.Если в равнобедренную трпецию вписана окружность, то боковая сторона равна средней линии трапеции
Слайд 2

Вписанная окружность

Центр вписанной окружности – середина серединного перпендикуляра к основаниям Если О- центр вписанной окружности, то СОD =90

3.Если в трапецию вписана окружность, то AB+CD=BC+AD 4.Если в равнобедренную трпецию вписана окружность, то боковая сторона равна средней линии трапеции

СM=CH MD=KD

Описанная окружность. R - радиус окружности, описанной около трапеции – равен радиусу окружности, описанной около треугольника, вершинами которого являются любые 3 вершины трапеции. О – центр описанной окружности около ABD и трапеции ABCD
Слайд 3

Описанная окружность

R - радиус окружности, описанной около трапеции – равен радиусу окружности, описанной около треугольника, вершинами которого являются любые 3 вершины трапеции.

О – центр описанной окружности около ABD и трапеции ABCD

Задачи. В равнобедренной трапеции BC=9, AD=21, высота h=8. Найти диаметр описанной около трапеции окружности. Решение: Радиус R описанной окружности около трапеции – это радиус окружности около ABD D=2R, R= AH = = =6 HD =21-6 = 15 HBD: DB = ABH: AB= P=. D=2R= Ответ.21,25
Слайд 4

Задачи

В равнобедренной трапеции BC=9, AD=21, высота h=8. Найти диаметр описанной около трапеции окружности. Решение: Радиус R описанной окружности около трапеции – это радиус окружности около ABD D=2R, R= AH = = =6 HD =21-6 = 15 HBD: DB = ABH: AB= P=

D=2R= Ответ.21,25

Около окружности описана равнобедренная трапеция, средняя линия которой равна 5, и синус угла (острого) при основании равен 0.8. Найти площадь трапеции. О – центр вписанной окружности – середина серединного перпендикуляра к основаниям трапеции. ВК – высота трапеции. S =MN BK Т.к. окружность вписана
Слайд 5

Около окружности описана равнобедренная трапеция, средняя линия которой равна 5, и синус угла (острого) при основании равен 0.8. Найти площадь трапеции.

О – центр вписанной окружности – середина серединного перпендикуляра к основаниям трапеции. ВК – высота трапеции. S =MN BK Т.к. окружность вписана в трапецию, то BC+AD=AB+CD Т.к. AB+CD, то BC+AD=2AB MN=

Значит 2MN=2AB=5 ABK: BK=ABsinA= 5 0.8=4 S=5 4=20 Ответ. 20

Около трапеции описана окружность, центр которой лежит внутри трапеции. Высота трапеции равна 27, а основания 48 и 30. найти радиус окружности. А. КH – высота, КН – срединный перпендикуляр ОА=ОВ=R Пусть OH=х, тогда ОК=КН-ОН=27-х AOH: AO. Тогда 54х=378 Х=7 R=OA= Ответ.25
Слайд 6

Около трапеции описана окружность, центр которой лежит внутри трапеции. Высота трапеции равна 27, а основания 48 и 30. найти радиус окружности.

А

КH – высота, КН – срединный перпендикуляр ОА=ОВ=R Пусть OH=х, тогда ОК=КН-ОН=27-х AOH: AO

Тогда 54х=378 Х=7 R=OA= Ответ.25

В прямоугольную трапецию вписана окружность. Точка касания окружности с боковой стороной делит эту сторону на отрезки 1 см и 4см. Найти периметр трапеции. СD=CH+HD=1+4=5. O - центр вписанной окружности в трапецию, значит. COD=90 R=OH=2 Значит АВ=2r=2 2 =4 CKD: KD=. MC= CH=1, т.к. O- центр вписанной
Слайд 7

В прямоугольную трапецию вписана окружность. Точка касания окружности с боковой стороной делит эту сторону на отрезки 1 см и 4см. Найти периметр трапеции.

СD=CH+HD=1+4=5

O - центр вписанной окружности в трапецию, значит

COD=90 R=OH=2 Значит АВ=2r=2 2 =4 CKD: KD=

MC= CH=1, т.к. O- центр вписанной окружности BC=BM+CM=2+1=3, AD=AK+KD=3+3=6, P=4+3+5+6=18

Решить самостоятельно. 1. Один из углов равнобедренной трапеции равен 60 , а её площадь равна. Найти радиус окружности, вписанной в эту трапецию. Ответ.3. 2.Окружность описана около равнобедренной трапеции ABCD с основанием AD=15 AC и BD образуют с боковой стороной AB углы ВАС= , ABD= также, что sin
Слайд 8

Решить самостоятельно

1. Один из углов равнобедренной трапеции равен 60 , а её площадь равна

Найти радиус окружности, вписанной в эту трапецию.

Ответ.3.

2.Окружность описана около равнобедренной трапеции ABCD с основанием AD=15 AC и BD образуют с боковой стороной AB углы ВАС= , ABD= также, что sin

MN средняя линия трапеции. Найти MN.

Ответ.12.

3.Около трапеции описана окружность, центр которой лежит на основании AD.

Средняя линия равна 6.

Найти радиус описанной окружности.

Ответ.4.

4.Равнобедренная трапеция описана около окружности радиуса 2. Найти площадь трапеции, если косинус угла при большем основании трапеции равен 0,6

Ответ.20.

5.Средняя линия прямоугольной трапеции равна 9,а радиус вписанной окружности в неё равен 4. Найти большее основание трапеции.

Ответ.12

Список похожих презентаций

Вписанная и описанная окружность

Вписанная и описанная окружность

Окружность называется вписанной в многоугольник, если. все стороны многоугольника касаются данной окружности. Всегда ли можно вписать окружность в ...
Вписанная и описанная окружность

Вписанная и описанная окружность

АРХИМЕД (287-212 ДО Н.Э.) – древнегреческий математик и механик. Древние математики не владели понятиями математического анализа. Однако они умели ...
Вписанная и описанная окружность

Вписанная и описанная окружность

1. Окружность с центром в точке О описана около прямоугольного треугольника. Докажите, что точка О -середина гипотенузы. 2. Найдите радиус этой окружности, ...
Вписанная и описанная окружность

Вписанная и описанная окружность

ТЕМА: «ВПИСАННАЯ И ОПИСАННАЯ ОКРУЖНОСТЬ». ОБРАЗОВАТЕЛЬНАЯ ЦЕЛЬ: ВЫЯСНИТЬ КАК УЧАЩИЕСЯ УСВОИЛИ СВОЙСТВА ВПИСАННОЙ И ОПИСАННОЙ ОКРУЖНОСТЕЙ; ЗАКРЕПЛЕНИЕ ...
Вписанная окружность

Вписанная окружность

Цели урока:. 1.Познакомится с определением вписанной окружности. 2.Изучить доказательство теоремы о вписанной окружности. 3.Решение задач по данной ...
Описанная окружность

Описанная окружность

. . Как вписать \ описать нам окружность счастья? В любую ли фигуру можно вписать окружность? Около какой фигуры можно описать окружность? Вписанная ...
Вневписанная окружность

Вневписанная окружность

Содержание. Введение. Основная часть Глава 1. Определение вневписанной окружности. Центр вневписанной окружности. Касательная к вневписанной окружности. ...
Описанная около многоугольника окружность

Описанная около многоугольника окружность

Многоугольники, описанные около окружности. Многоугольник называется описанным около окружности, если все его стороны касаются этой окружности. Сама ...
Вневписанная окружность треугольника

Вневписанная окружность треугольника

Вневписанная окружность. B A C Ka K1. Kb Kc ra rb rc. Определение. Вневписанной окружностью треугольника называется окружность, касающаяся одной из ...
Треугольник. Вписанная окружность

Треугольник. Вписанная окружность

Треугольник. Описанная окружность. Центр описанной окружности – точка пересечения серединных перпендикуляров к сторонам треугольника. 2) Центр описанной ...
числовая окружность на координатной плоскости

числовая окружность на координатной плоскости

Содержание:. Числовая окружность. Числовая окружность на координатной плоскости Синус и косинус. Тангенс и котангенс. Тригонометрические функции числового ...
Задачи на вписанную окружность

Задачи на вписанную окружность

Математический К В Н. Вписанная окружность. Определение: Если все стороны многоугольника касаются окружности, то окружность называется вписанной в ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:8 Августа 2019
Категория:Математика
Содержит:8 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть похожие презентации Смотреть советы по подготовке презентации