- Задача и пять методов её решения

Презентация "Задача и пять методов её решения" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16

Презентацию на тему "Задача и пять методов её решения" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 16 слайд(ов).

Слайды презентации

Задача и пять методов её решения. ГАОУ ДПО СарИПКиПРО ІІІ региональный конкурс творческих работ по математике «Математика в моей жизни» Номинация «Бенефис одной задачи». Выполнила: Шатилова Виктория Ученица 11 класса МОУ «СОШ р.п. Красный Текстильщик Саратовского района Саратовской области» Научный
Слайд 1

Задача и пять методов её решения

ГАОУ ДПО СарИПКиПРО ІІІ региональный конкурс творческих работ по математике «Математика в моей жизни» Номинация «Бенефис одной задачи»

Выполнила: Шатилова Виктория Ученица 11 класса МОУ «СОШ р.п. Красный Текстильщик Саратовского района Саратовской области» Научный руководитель: Свириденко О.В.

2011г

Введение. Для успешного изучения геометрии необходимо знать не только основные формулы и теоремы, но и владеть различными методами решения задач. Пять основных методов, применяемых в решении задач: координатный векторный аналитический тригонометрический геометрический
Слайд 2

Введение

Для успешного изучения геометрии необходимо знать не только основные формулы и теоремы, но и владеть различными методами решения задач.

Пять основных методов, применяемых в решении задач:

координатный векторный аналитический тригонометрический геометрический

Гипотеза: Возможно ли решить конкретную задачу всеми указанными методами? ?
Слайд 3

Гипотеза:

Возможно ли решить конкретную задачу всеми указанными методами?

?

Цель работы: Задачи работы: испробовать разные методы на одной задаче; выявить отличительные черты, сильные и слабые стороны разных методов. Научиться распознаванию и использованию математических методов при рассмотрении различных решени одной и той же задачи
Слайд 4

Цель работы:

Задачи работы: испробовать разные методы на одной задаче; выявить отличительные черты, сильные и слабые стороны разных методов.

Научиться распознаванию и использованию математических методов при рассмотрении различных решени одной и той же задачи

В треугольнике АВС биссектриса ВЕ и медиана AD перпендикулярны и имеют одинаковую длину, равную 4. Найти стороны треугольника АВС. Приступая к решению задачи, сразу замечаем, что если О – точка пересечения биссектрисы ВЕ и медианы AD, то прямоугольные треугольники ABO и DВО равны. Поэтому АО=ОD=2 и
Слайд 5

В треугольнике АВС биссектриса ВЕ и медиана AD перпендикулярны и имеют одинаковую длину, равную 4. Найти стороны треугольника АВС.

Приступая к решению задачи, сразу замечаем, что если О – точка пересечения биссектрисы ВЕ и медианы AD, то прямоугольные треугольники ABO и DВО равны. Поэтому АО=ОD=2 и АВ=BD, так что ВС=2АВ.

Примем точку О за начало прямоугольной системы координат, оси Ох придадим направление вектора OD и будем считать единицей масштаба. В данной системе точки A, D, B имеют координаты: А (-2;0), D (2;0) и В (0;b). Способ первый: Координатный. Для того чтобы определить длины сторон треугольника АВС, надо
Слайд 6

Примем точку О за начало прямоугольной системы координат, оси Ох придадим направление вектора OD и будем считать единицей масштаба. В данной системе точки A, D, B имеют координаты: А (-2;0), D (2;0) и В (0;b).

Способ первый: Координатный

Для того чтобы определить длины сторон треугольника АВС, надо найти число b. Выразим через b координаты точек С и Е. Так как D – середина отрезка ВС, то С (4;-b). Для точки Е имеем координаты (0;у). Вторую координату точки Е найдем, пользуясь, тем что точка Е принадлежит прямой АС. Уравнение прямой АС имеет вид: Координаты точки Е (0;у) удовлетворяют этому уравнению. Подставив в него 0 вместо х, получим: Следовательно, По условию задачи ВЕ=4, значит, , или b=3. Итак, А (-2;0), В (0;3), С (4;-3). Зная координаты вершин треугольника АВС, найдем его стороны:

Векторы ВЕ и АД выразим через а и с.Так как ВС=2BD, то СЕ=2АЕ( по свойству биссектрисы треугольника). Пользуясь формулой деления отрезка в данном отношении, получим: Согласно вычитанию векторов, имеем: Длины векторов ВЕ и АD известны. Пусть Вычислив скалярные квадраты вектором ВЕ и АD, получим уравн
Слайд 7

Векторы ВЕ и АД выразим через а и с.Так как ВС=2BD, то СЕ=2АЕ( по свойству биссектрисы треугольника). Пользуясь формулой деления отрезка в данном отношении, получим: Согласно вычитанию векторов, имеем: Длины векторов ВЕ и АD известны. Пусть Вычислив скалярные квадраты вектором ВЕ и АD, получим уравнения: Найдем теперь через сторону АС, пользуясь векторной формулировкой теоремы косинусов: Подставим найденные выше значения и получим:

Способ второй: Векторный

Медиану AD и биссектрису ВЕ треугольника АВС выразим через длины а, b, с сторон треугольника по формулам: Пусть АВ=х, АЕ=у, тогда ВС=2х и СЕ=2у. Получим систему уравнений: Способ третий: Аналитический
Слайд 8

Медиану AD и биссектрису ВЕ треугольника АВС выразим через длины а, b, с сторон треугольника по формулам: Пусть АВ=х, АЕ=у, тогда ВС=2х и СЕ=2у. Получим систему уравнений:

Способ третий: Аналитический

Способ четвертый: Тригонометрический. Обозначим АВ=х, угол АВС=2α. По теореме косинусов из треугольников АВЕ и ВСЕ находим: Учитывая, что СЕ=2АЕ или СЕ2=4АЕ2, получаем: x cos α=3. Но x cos α=ВО, значит, ВО=3 и ОЕ=1. Остается, пользуясь теоремой Пифагора, вычислить стороны треугольника АВС.
Слайд 9

Способ четвертый:

Тригонометрический

Обозначим АВ=х, угол АВС=2α. По теореме косинусов из треугольников АВЕ и ВСЕ находим: Учитывая, что СЕ=2АЕ или СЕ2=4АЕ2, получаем: x cos α=3. Но x cos α=ВО, значит, ВО=3 и ОЕ=1. Остается, пользуясь теоремой Пифагора, вычислить стороны треугольника АВС.

Геометрический способ. 1.С помощью площадей. 2. С помощью осевой симметрии. 3. По теореме о средней линии треугольника. 4. По теореме Менелая
Слайд 10

Геометрический способ

1.С помощью площадей

2. С помощью осевой симметрии

3. По теореме о средней линии треугольника

4. По теореме Менелая

Так как АО=ОD=2, ВЕ=4 и АD перпендикулярна ВЕ, то площадь каждого из треугольников ВАЕ и ВDЕ равна 4. Площадь треугольника СDЕ так же равна 4, так как медиана ED делит треугольник ВСЕ на два равновеликих треугольника. Значит, площадь треугольника АВС равна 12. По скольку АD-медиана треугольника АВС,
Слайд 11

Так как АО=ОD=2, ВЕ=4 и АD перпендикулярна ВЕ, то площадь каждого из треугольников ВАЕ и ВDЕ равна 4. Площадь треугольника СDЕ так же равна 4, так как медиана ED делит треугольник ВСЕ на два равновеликих треугольника. Значит, площадь треугольника АВС равна 12. По скольку АD-медиана треугольника АВС, то площадь треугольника АВD равна 6. Остается применить формулу площади треугольника. Получим: АО*ВО=6. Но АО=2, значит, ВО=3 Стороны треугольника АВС найдем по теореме Пифагора.

Способ пятый:

С помощью площадей

Способ шестой: С помощью осевой симметрии. Точки А и D симметричны относительно биссектрисы ВЕ. Построим еще точку, симметричную точке С относительно прямой ВЕ. Для этого продолжим отрезок DЕ до пересечения с прямой АВ и обозначим через F точку пересечения прямых АВ и DЕ. Получим равнобедренный треу
Слайд 12

Способ шестой:

С помощью осевой симметрии

Точки А и D симметричны относительно биссектрисы ВЕ. Построим еще точку, симметричную точке С относительно прямой ВЕ. Для этого продолжим отрезок DЕ до пересечения с прямой АВ и обозначим через F точку пересечения прямых АВ и DЕ. Получим равнобедренный треугольник ВСF, из равенства треугольника ВЕF и ВЕС следует, что ВF=ВС. Продолжим еще биссектрису ВЕ до пересечения с СF в точке Н. Тогда ВН - биссектриса треугольника ВСF, а следовательно, и его медиана. Таким образом, Е – точка пересечения медиан треугольника ВСF, и поэтому ЕН=0,5ВЕ=2, а ВН=6. Средняя линия AD треугольника ВСF делит медиану ВН пополам, поэтому ВО=3. Далее поступаем так же, как при решении задачи другими способами и получаем тот же ответ.

Проведем среднюю линию DК треугольника ВСЕ. Так как DК параллельна ВЕ и АО=ОD, то ОЕ – средняя линия треугольника ADK. Следовательно: Так как ВЕ=4, то ОЕ=1 и ВО=3 Из приведенного решения видно, что отношение ВО/ОЕ не зависит от отрезков ВЕ и AD. Найти это отношение можно также, используя лишь тот фа
Слайд 13

Проведем среднюю линию DК треугольника ВСЕ. Так как DК параллельна ВЕ и АО=ОD, то ОЕ – средняя линия треугольника ADK. Следовательно: Так как ВЕ=4, то ОЕ=1 и ВО=3 Из приведенного решения видно, что отношение ВО/ОЕ не зависит от отрезков ВЕ и AD. Найти это отношение можно также, используя лишь тот факт, что АD – медиана треугольника АВС и АО=ОВ, причем без всяких вспомогательных построений.

Способ седьмой:

По теореме о средней линии треугольника

Секущая ВЕ пересекает стороны треугольника АСD в точках Е и О. По теореме Менелая из треугольника АСD имеем: а так как Применив теперь теорему Менелая к треугольнику ВСЕ и секущей АD, получим: Но АЕ/АС=1/3 и СD=DB. Следовательно, ВО/ОЕ=3. Способ восьмой: По теореме Менелая
Слайд 14

Секущая ВЕ пересекает стороны треугольника АСD в точках Е и О. По теореме Менелая из треугольника АСD имеем: а так как Применив теперь теорему Менелая к треугольнику ВСЕ и секущей АD, получим: Но АЕ/АС=1/3 и СD=DB. Следовательно, ВО/ОЕ=3.

Способ восьмой:

По теореме Менелая

Вывод: В ходе работы мы рассмотрели пять методов решения конкретной задачи: Как правило, основными методами решения планиметрических задач на вычисления являются алгебраические и тригонометрические методы. Но как видно из работы, геометрические методы оказались проще и изящнее, хотя к ним можно прий
Слайд 15

Вывод:

В ходе работы мы рассмотрели пять методов решения конкретной задачи:

Как правило, основными методами решения планиметрических задач на вычисления являются алгебраические и тригонометрические методы. Но как видно из работы, геометрические методы оказались проще и изящнее, хотя к ним можно прийти только догадавшись провести некоторые вспомогательные линии. Таким образом, важно владеть геометрическими приемами, которые позволяют найти наиболее простое и красивое решение с помощью дополнительных построений.

Литература: Научно-теоретический и методический журнал МО РФ «Математика в школе» №3 1994
Слайд 16

Литература:

Научно-теоретический и методический журнал МО РФ «Математика в школе» №3 1994

Список похожих презентаций

7 способов решения тригонометрического уравнения

7 способов решения тригонометрического уравнения

Математики видят ее в:. гармонии чисел и форм, геометрической выразительности, стройности математических формул, решении задач различными способами, ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
I Функция У=АХ², её график и свойства

I Функция У=АХ², её график и свойства

А=1 У=Х ². А=2 У=2Х ². У=Х² У=2Х². Растяжение от оси Х в два раза. А=0.5 У=Х² У=0.5Х². Сжатие по оси Х в два раза. Вообще график функции У=АХ² можно ...
10 способов решения квадратных уравнений

10 способов решения квадратных уравнений

История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне: Х2+Х=3/4 Х2-Х=14,5. Как составлял и решал Диофант квадратные уравнения. ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Действия с дробями», «Нахождение дроби и процентов от числа»

«Действия с дробями», «Нахождение дроби и процентов от числа»

Систематизация знаний по темам: «Действия с дробями», «Нахождение дроби и процентов от числа», Отработка практических навыков выполнения действий ...

Конспекты

Алгоритм решения задачи на нахождение целого и частей

Алгоритм решения задачи на нахождение целого и частей

. Тимошенкова. Ирина Викторовна. Учитель начальных классов. МБ НОУ «Гимназия № 70». Г. Новокузнецк. Алгоритм. решения задачи. ...
Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 июня 2019
Категория:Математика
Содержит:16 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации