- Геометрия до Евклида в очерках и задачах

Презентация "Геометрия до Евклида в очерках и задачах" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26

Презентацию на тему "Геометрия до Евклида в очерках и задачах" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 26 слайд(ов).

Слайды презентации

Геометрия до Евклида в очерках и задачах. Тема: Математика. «Муниципальное общеобразовательное учреждение Абазинская средняя общеобразовательная школа №50». Информационно -реферативная работа Назарова Алёна, Учащийся 7 «Г» класса
Слайд 1

Геометрия до Евклида в очерках и задачах.

Тема: Математика.

«Муниципальное общеобразовательное учреждение Абазинская средняя общеобразовательная школа №50»

Информационно -реферативная работа Назарова Алёна, Учащийся 7 «Г» класса

Введение: Цель моей работы: Изучение исторических сведений, показать связь основных этапов развития математики с этапами развития человечества. Задачи работы: Рассмотреть исторический материал в очерках и задачах. Установить логическо-структурное сопоставление форм реализации исторического процессов
Слайд 2

Введение:

Цель моей работы: Изучение исторических сведений, показать связь основных этапов развития математики с этапами развития человечества. Задачи работы: Рассмотреть исторический материал в очерках и задачах. Установить логическо-структурное сопоставление форм реализации исторического процессов развития общества и математики.

МАТЕМАТИКА В ПАЛЕОЛИТЕ И НЕОЛИТЕ. Наши первоначальные представления о числах и геометрических формах относятся к эпохе древнего каменного века – палеолита. Уже тогда люди изготовляли орудия для охоты и рыболовства в форме ромбов, треугольников, сегментов. В эпоху позднего палеолита они стали украшат
Слайд 3

МАТЕМАТИКА В ПАЛЕОЛИТЕ И НЕОЛИТЕ.

Наши первоначальные представления о числах и геометрических формах относятся к эпохе древнего каменного века – палеолита. Уже тогда люди изготовляли орудия для охоты и рыболовства в форме ромбов, треугольников, сегментов. В эпоху позднего палеолита они стали украшать свои жилища наскальными рисунками и статуэтками, имевшими ритуальное значение. С наступлением неолита произошёл переход от простого собирания пищи к её производству, от охоты и рыболовства к земледелию. Постепенно рыболовы и охотники сменялись первобытными земледельцами, которые вели оседлый образ жизни. Появились простейшие ремесла – гончарное плотничье, ткацкое.

Краткий обзор развития геометрии. Начало геометрии было положено в древности при решении чисто практических задач. Со временем, когда накопилось большое количество геометрических фактов, у людей появилась потребность обобщения, уяснение зависимости одних элементов от других, установление логических
Слайд 4

Краткий обзор развития геометрии

Начало геометрии было положено в древности при решении чисто практических задач. Со временем, когда накопилось большое количество геометрических фактов, у людей появилась потребность обобщения, уяснение зависимости одних элементов от других, установление логических связей и доказательств. Постепенно создавалась геометрическая наука. Примерно в VI-Vвв. До н.э. в Древней Греции в геометрии начался новый этап развития, что объясняется высоким уровнем, которого достигла общественно-политическая и культурная жизнь в греческих государствах. Произведения, содержащие систематическое изложение геометрии, появились в Греции еще в V в. до н.э., но они были вытеснены «Началами» Евклида.

Геометрические знания примерно в объеме современного курса средней школы были изложены еще 2200 лет назад в «Началах» Евклида. Конечно, изложенная в «Началах» наука геометрия не могла быть создана одним ученым. Известно, что Евклид в своей работе опирался на труды десятков предшественников, среди ко
Слайд 5

Геометрические знания примерно в объеме современного курса средней школы были изложены еще 2200 лет назад в «Началах» Евклида. Конечно, изложенная в «Началах» наука геометрия не могла быть создана одним ученым. Известно, что Евклид в своей работе опирался на труды десятков предшественников, среди которых были Фалес и Пифагор, Демокрит и Гиппократ, Архит, Теэтет, Евдокс и др. Ценой больших усилий, исходят от отдельных геометрических сведений, накопленных тысячелетиями в практической деятельности людей, эти великие ученые сумели на протяжение 3-4 столетий привести геометрическую науку к высокой ступени совершенства. Историческая заслуга Евклида состоит в том, что он, создавая свои «Начала», объединил результаты своих предшественников, упорядочил и привел в одну систему основные геометрические знания того времени. На протяжение двух тысячелетий геометрия изучалась в том объеме, порядке и стиле, как она была изложена в «Началах» Евклида (Рис. 1).

Из китайского издания «Начал» Евклида (XVII в.)

РИСУНОК 1

В XVIII-XIX вв. развитие военного дела и архитектуры привело к разработке методов точного изображения пространственных фигур на плоском чертеже, в связи с чем появляются начертательная геометрия, научные основы которой заложил французский математик Г.Монж, и проективная геометрия, основы которой был
Слайд 6

В XVIII-XIX вв. развитие военного дела и архитектуры привело к разработке методов точного изображения пространственных фигур на плоском чертеже, в связи с чем появляются начертательная геометрия, научные основы которой заложил французский математик Г.Монж, и проективная геометрия, основы которой были созданы в трудах французских математиков Ж.Дезарга и Б.Паскаля (XVII в.). В ее создании важнейшую роль сыграл другой французский математик - Ж.В.Понселе (XIX в.).

Г. Монж

Коренной перелом в геометрии впервые произвел в первой половине XIX в. великий русский математик Николай Иванович Лобачевский, который создал новую, неевклидову геометрию, называемую ныне геометрией Лобачевского. Открытие Лобачевского было началом нового периода в развитии геометрии. За ним последов
Слайд 7

Коренной перелом в геометрии впервые произвел в первой половине XIX в. великий русский математик Николай Иванович Лобачевский, который создал новую, неевклидову геометрию, называемую ныне геометрией Лобачевского. Открытие Лобачевского было началом нового периода в развитии геометрии. За ним последовали новые открытия немецкого математика Б.Римана и др.

Н.И.Лобачевский

Геометрические знания в Древнем Египте.
Слайд 8

Геометрические знания в Древнем Египте.

Геометрические задачи касаются преимущественно измерений и содержат правила для вычисления площадей треугольника и трапеции. Для вычисления площади произвольного четырёхугольника со сторонами а, в, с, d использовалось правило, записываемое в современных обозначениях в виде Для площади круга с диамет
Слайд 9

Геометрические задачи касаются преимущественно измерений и содержат правила для вычисления площадей треугольника и трапеции. Для вычисления площади произвольного четырёхугольника со сторонами а, в, с, d использовалось правило, записываемое в современных обозначениях в виде Для площади круга с диаметром d правило имело вид По – видимому, египтяне не сознавали, что эти правила являются приближёнными.

В Древнем Египте не было терминов «фигура», «сторона фигуры». Вместо этого использовались слова «поле», «границы поля», «длина поля».
Слайд 10

В Древнем Египте не было терминов «фигура», «сторона фигуры». Вместо этого использовались слова «поле», «границы поля», «длина поля».

«Геометрия была открыта египтянами и возникла при измерении земли вследствие разливов Нила, постоянно смыкающего границы участков. Нет ничего удивительного, что эта наука, как и другие, возникла из практических потребностей человека. Всякое возникающее знание из несовершенного состояния переходит в
Слайд 11

«Геометрия была открыта египтянами и возникла при измерении земли вследствие разливов Нила, постоянно смыкающего границы участков. Нет ничего удивительного, что эта наука, как и другие, возникла из практических потребностей человека. Всякое возникающее знание из несовершенного состояния переходит в совершенное».

Геометрия в Вавилоне. Основной чертой геометрии вавилонян был ее арифметико-алгебраический характер. Как и в Египте, геометрия развивалась на основе практических задач измерения, но геометрическая форма задачи обычно являлась только средством для постановки алгебраической проблемы. Гордость вавилоня
Слайд 12

Геометрия в Вавилоне.

Основной чертой геометрии вавилонян был ее арифметико-алгебраический характер. Как и в Египте, геометрия развивалась на основе практических задач измерения, но геометрическая форма задачи обычно являлась только средством для постановки алгебраической проблемы. Гордость вавилонян по праву считается изобретение позиционной системы счисления, что существенно повышало их вычислительные возможности. Поэтому в Вавилоне времен царя Хаммурапи (1750 г. до н.э.) уже решались задачи, приводящие не только к линейным уравнениям (как в Египте), но и к квадратным, и даже к кубическим и биквадратным. Решение квадратных уравнений привело вавилонян к составлению таблиц квадратных корней из натуральных чисел, определявшихся по правилу:

Тексты глиняных табличек вавилонян содержат правила для вычисления площадей простых прямолинейных фигур и для объемов простых тел. Теорема Пифагора была известна не только для частных случаев, но и в полной общности – трудно даже предположить, что вавилоняне подробно смогли найти такие «пифагоровы т
Слайд 13

Тексты глиняных табличек вавилонян содержат правила для вычисления площадей простых прямолинейных фигур и для объемов простых тел. Теорема Пифагора была известна не только для частных случаев, но и в полной общности – трудно даже предположить, что вавилоняне подробно смогли найти такие «пифагоровы тройки» чисел, как 65; 72; 97 или 3456; 3367; 4825.

Страница из первого печатного издания «Начал» Евклида.

Древнеиндийская геометрия. Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499г. Индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных
Слайд 14

Древнеиндийская геометрия.

Квадратные уравнения в Индии Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499г. Индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой конечной форме: ax2+bx=c, a>0 В этом уравнение коэффициенты, кроме а, могут быть и отрицательными. Правило брахмагупты по существу совпадает с нашим. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнаваний следущее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Ионийская школа натурфилософии. Античная традиция единодушно называет Фалеса отцом греческой науки, первым из семи мудрецов Древней Греции. Ученик Аристотеля Евдем Родосский называл Фалеса первым астрономом, римский писатель и ученый Плиний Старший – первым физиком, а карфагенянин Апулей – первым ге
Слайд 15

Ионийская школа натурфилософии.

Античная традиция единодушно называет Фалеса отцом греческой науки, первым из семи мудрецов Древней Греции. Ученик Аристотеля Евдем Родосский называл Фалеса первым астрономом, римский писатель и ученый Плиний Старший – первым физиком, а карфагенянин Апулей – первым геометром: «Фалес Милетский – один из тех знаменитых семи мудрецов и, несомненно, самый великий среди них – ведь это он был у греков первым изобретателем геометрии». Еще рассказывают, будто Фалес доказал, что расстояние от середины гипотенузы прямоугольного треугольника до вершины этого треугольника равны. Впрочем, легенд о Фалесе ходило множество, и это уже само по себе доказывает, что он был очень крупным ученым.

Появление планиметрии. Любопытно отметить, что греческие математики до Демокрита не разрабатывали «геометрию пространства». Платон в «Государстве» (ок. 360 г. до н.э.) отмечает, что с «наукой об измерении глубины дело обстоит до смешного плохо». Греческая стереометрия развивалась в ходе эволюции фил
Слайд 16

Появление планиметрии.

Любопытно отметить, что греческие математики до Демокрита не разрабатывали «геометрию пространства». Платон в «Государстве» (ок. 360 г. до н.э.) отмечает, что с «наукой об измерении глубины дело обстоит до смешного плохо». Греческая стереометрия развивалась в ходе эволюции философской мысли, космологии и физики. Не случайно основателя атомистической школы называют первым исследователем в области стереометрии.

Древний Китай. Прослеживая зарождение и становление геометрии, легко усмотреть поразительную близость математических сведений у различных народов, практически не общавшихся. Это сходство (как по форме, так и по содержанию) говорит об общности практических задач, породивших эти математические знания.
Слайд 17

Древний Китай.

Прослеживая зарождение и становление геометрии, легко усмотреть поразительную близость математических сведений у различных народов, практически не общавшихся. Это сходство (как по форме, так и по содержанию) говорит об общности практических задач, породивших эти математические знания. Так на протяжении тысячелетий опытом и разумом многочисленных безвестных тружеников и мыслителей закладывался фундамент математической науки.

Старинные задачки. Древнеегипетская задача Задача индийского математика Бхаскары Древнеиндийская задачка Бхаскарская задачка Задачи Диофанта
Слайд 18

Старинные задачки

Древнеегипетская задача Задача индийского математика Бхаскары Древнеиндийская задачка Бхаскарская задачка Задачи Диофанта

Древнеегипетская задача. Количество и его четвертая часть дает вместе 15. Найти количество.
Слайд 19

Древнеегипетская задача

Количество и его четвертая часть дает вместе 15. Найти количество.

Задача индийского математика Бхаскары. «На берегу реки рос тополь одинокий. Вдруг порыв ветра его ствол надломил. Бедный тополь упал. И угол прямой с теченьем реки его ствол составлял. Запомни теперь, что в том месте река в четыре лишь фута была широка. Верхушка склонилась у края реки. Осталось три
Слайд 20

Задача индийского математика Бхаскары

«На берегу реки рос тополь одинокий. Вдруг порыв ветра его ствол надломил. Бедный тополь упал. И угол прямой с теченьем реки его ствол составлял. Запомни теперь, что в том месте река в четыре лишь фута была широка. Верхушка склонилась у края реки. Осталось три фута всего от ствола. Прошу тебя, скоро теперь мне скажи: У тополя как велика высота?»

Древнеиндийская задача. Есть кадамба цветок. На один лепесток пчелок пятая часть опустилась. Рядом тут же росла вся в цвету сименгда, Разность их ты найди, трижды их ты сложи, На кутай этих пчел посади. Лишь одна не нашла себе места нигде, Все летала то взад, то вперед И везде ароматом цветов наслаж
Слайд 21

Древнеиндийская задача

Есть кадамба цветок. На один лепесток пчелок пятая часть опустилась. Рядом тут же росла вся в цвету сименгда, Разность их ты найди, трижды их ты сложи, На кутай этих пчел посади. Лишь одна не нашла себе места нигде, Все летала то взад, то вперед И везде ароматом цветов наслаждалась. Назови теперь мне, подсчитавши в уме, Сколько пчелок всего здесь собралось?

Баскарская задача. Обезьянок резвых стая Всласть поевших, развлекалась, Их в квадрате часть восьмая На поляне забавлялась. А 12 по лианам… Стали прыгать, повисая… Сколько ж было обезьянок, Ты скажи мне в этой стае?
Слайд 22

Баскарская задача

Обезьянок резвых стая Всласть поевших, развлекалась, Их в квадрате часть восьмая На поляне забавлялась. А 12 по лианам… Стали прыгать, повисая… Сколько ж было обезьянок, Ты скажи мне в этой стае?

Задачи Диофанта. Прах Диофанта гробница покоит; дивись ей - и камень Мудрым искусством его скажет усопшего век. Волей богов шестую часть жизни он прожил ребенком, И половину шестой встретил с пушком на щеках. Только минула седьмая, с подругою он обручился. С нею пять лет проведя, сына дождался мудре
Слайд 23

Задачи Диофанта

Прах Диофанта гробница покоит; дивись ей - и камень Мудрым искусством его скажет усопшего век. Волей богов шестую часть жизни он прожил ребенком, И половину шестой встретил с пушком на щеках. Только минула седьмая, с подругою он обручился. С нею пять лет проведя, сына дождался мудрец; Только полжизни отцовской возлюбленный сын его прожил. Отнят он был у отца ранней могилой своей. Дважды два года родитель оплакивал тяжелое горе, тут и увидел предел жизни печальной своей. Найти два целых числа, зная, что разность произведений первого на 19 и второго на 8 равно 13.

Квадратные уравнения Диофанта

1)12x² + x = 1 2)630x² + 73x = 6

Заключение. В процессе работы я узнала что, коротко математику можно охарактеризовать как науку о числах и фигурах. Название её произошло от греческого máthëma — наука. До начала XVII века математика преимущественно наука о числах, скалярных величинах и сравнительно простых геометрических фигурах, и
Слайд 24

Заключение.

В процессе работы я узнала что, коротко математику можно охарактеризовать как науку о числах и фигурах. Название её произошло от греческого máthëma — наука. До начала XVII века математика преимущественно наука о числах, скалярных величинах и сравнительно простых геометрических фигурах, изучаемые ею величины — длины, площади, объемы рассматриваются как постоянные. К этому периоду относится возникновение арифметики, геометрии, позднее — алгебры и тригонометрии. Областью применения математики являлись счёт, торговля, землемерные работы, архитектура, астрономия. Практическое освоение результатов теоретического математического исследования требует получения ответа на поставленную задачу в числовой форме.

Закончить свою работу мне хочется словами, с которыми знаменитый французский математик XVIII в. Жозеф Луи Лагранж (в 19 лет уже имевший степень профессора математики) обращался к молодым математикам: «Читайте, понимание придёт потом». Вывод:
Слайд 25

Закончить свою работу мне хочется словами, с которыми знаменитый французский математик XVIII в. Жозеф Луи Лагранж (в 19 лет уже имевший степень профессора математики) обращался к молодым математикам: «Читайте, понимание придёт потом».

Вывод:

Спасибо за внимание!
Слайд 26

Спасибо за внимание!

Список похожих презентаций

V postulatum Евклида

V postulatum Евклида

Проект подготовили: ученики 10 класса «А» Косинов Никита Ушакова Екатерина Мурзакова Алина Кузьмина Юлия. МОУ многопрофильный лицей № 20. Ульяновск ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
«Начала» Евклида

«Начала» Евклида

Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Но теория многогранников является и современным ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Доли и дроби"

"Доли и дроби"

Семья Долиных:. Бабушка Доля Дедушка Доль Внуки Дробик и Долюша. Бабушка доля очень любит печь пироги. Дробик пришел с фермы очень голодный. разрезал ...
Аксиомы стереометрии и их следствия

Аксиомы стереометрии и их следствия

Цели:. Изучить аксиомы стереометрии: - о взаимном расположении точек, - о взаимном расположении прямых, - о взаимном расположении плоскостей в пространстве. ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
«Действия с дробями», «Нахождение дроби и процентов от числа»

«Действия с дробями», «Нахождение дроби и процентов от числа»

Систематизация знаний по темам: «Действия с дробями», «Нахождение дроби и процентов от числа», Отработка практических навыков выполнения действий ...
I Функция У=АХ², её график и свойства

I Функция У=АХ², её график и свойства

А=1 У=Х ². А=2 У=2Х ². У=Х² У=2Х². Растяжение от оси Х в два раза. А=0.5 У=Х² У=0.5Х². Сжатие по оси Х в два раза. Вообще график функции У=АХ² можно ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...

Конспекты

Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
Алгебра событий и основные правила вычисления вероятностей

Алгебра событий и основные правила вычисления вероятностей

Закономерности окружающего мира – 7 класс. Тема 9. Алгебра событий и основные правила вычисления вероятностей. урок на тему. Правило сложения ...
Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов

Алгоритм и его свойства. Запись алгоритмов. Виды алгоритмов. . КАЗАХСТАН. ЮЖНО-КАЗАХСТАНСКАЯ ОБЛАСТЬ. Г.ШЫМКЕНТ, ОСНОВНАЯ СРЕДНЯЯ ШКОЛА №97. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Веселая и полезная математика

Веселая и полезная математика

. Тюрина Валентина Викторовна. 1 квалификационная категория – учитель математики. Город Прокопьевск Кемеровская область. МКОУ «Школа – интернат ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Вероятность и математическая статистика

Вероятность и математическая статистика

Открытый урок. . по учебной дисциплине Теория вероятностей и математическая статистика. Тема: «Вероятность и математическая статистика». Группа ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Верно и неверно

Верно и неверно

МБОУ Чымнайская средняя общеобразовательная школа имени Г.Д.Бястинова. Таттинского улуса республики Саха(Якутия). Варламова Татьяна Спиридоновна- ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:8 июня 2019
Категория:Математика
Содержит:26 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации