Презентация "Цилиндр" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12

Презентацию на тему "Цилиндр" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 12 слайд(ов).

Слайды презентации

Выполнила ученица 11 класса Ламонова Светлана Учитель математики: Стрельникова Л.П. Проект по геометрии на тему: "Цилиндр".
Слайд 1

Выполнила ученица 11 класса Ламонова Светлана Учитель математики: Стрельникова Л.П.

Проект по геометрии на тему:

"Цилиндр".

Цили́ндр (греч. kýlindros, валик, каток) - геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра); причём если оснований два, то одно получено из другого параллельным переносом вдоль образующе
Слайд 2

Цили́ндр (греч. kýlindros, валик, каток) - геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра); причём если оснований два, то одно получено из другого параллельным переносом вдоль образующей боковой поверхности цилиндра; и основание пересекает каждую образующую боковой поверхности ровно один раз.

Что такое цилиндр?

Слово цилиндр происходит от греческого слова , что означает “валик”, “каток”. Конус в переводе с греческого “konos” означает “сосновая шишка”. С конусом и цилиндром люди знакомы с глубокой древности. В 1906 году была обнаружена книга Архимеда (287–212 гг. до н.э.) “О методе”, в которой дается решени
Слайд 3

Слово цилиндр происходит от греческого слова , что означает “валик”, “каток”. Конус в переводе с греческого “konos” означает “сосновая шишка”. С конусом и цилиндром люди знакомы с глубокой древности. В 1906 году была обнаружена книга Архимеда (287–212 гг. до н.э.) “О методе”, в которой дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед приписывает честь открытия этого принципа – Демокриту (470–380 гг. до н.э.) – древнегреческому философу-материалисту. С помощью этого принципа Демокрит получил формулу для вычисления объема пирамиды и конуса. Много сделала для геометрии школа Платона (428–348 гг. до н.э.). Платон был учеником Сократа (470–399 гг. до н.э.). Он в 387 г. до н.э. основал в Африке Академию, в которой работал 20 лет. Каждый, входящий в Академию, читал надпись: “Пусть сюда не входит никто, не знающий геометрии”. Школе Платона с частности принадлежит: а) исследование свойств призмы, пирамиды, цилиндра и конуса; б) изучение конических сечений. Большой трактат о конических сечениях был написан Аполлонием Пергским (260–170 гг. до н.э.) – учеником Евклида (III в. до н.э.), который создал великий труд из 15 книг под названием “Начала”. Эти книги издаются и по сей день, а в школах Англии по ним учатся до сих пор.

Немного истории...

Бесконечное тело, ограниченное замкнутой бесконечной цилиндрической поверхностью, называется бесконечным цилиндром, ограниченное замкнутым цилиндрическим лучом и его основанием, называется открытым цилиндром. Основание и образующие цилиндрического луча называют соответственно основанием и образующим
Слайд 4

Бесконечное тело, ограниченное замкнутой бесконечной цилиндрической поверхностью, называется бесконечным цилиндром, ограниченное замкнутым цилиндрическим лучом и его основанием, называется открытым цилиндром. Основание и образующие цилиндрического луча называют соответственно основанием и образующими открытого цилиндра. Конечное тело, ограниченное замкнутой конечной цилиндрической поверхностью и двумя выделившими её сечениями, называется конечным цилиндром, или собственно цилиндром. Сечения называются основаниями цилиндра. По определению конечной цилиндрической поверхности, основания цилиндра равны. Очевидно, образующие боковой поверхности цилиндра — равные по длине (называемой высотой цилиндра) отрезки, лежащие на параллельных прямых, а концами лежащие на основаниях цилиндра.

Понятия цилиндра.

Цилиндром называется тело, которое состоит из 2 кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соотв. точки этих кругов. Круги называются основанием цилиндра, а отрезки образующими цилиндра. Также, как и для призмы доказывается, что основания цилиндра равны и лежат в паралл
Слайд 6

Цилиндром называется тело, которое состоит из 2 кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соотв. точки этих кругов. Круги называются основанием цилиндра, а отрезки образующими цилиндра. Также, как и для призмы доказывается, что основания цилиндра равны и лежат в параллельных плоскостях, образующие параллельны и равны. Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований. Радиусом r называется радиус его основания. Высота — расстояние между плоскостями оснований. Ось — прямая, проходящая через центры основан.

Правильный круглый цилиндр. Эллиптический цилиндр.
Слайд 7

Правильный круглый цилиндр.

Эллиптический цилиндр.

Тело, ограниченное замкнутой бесконечной цилиндрической поверхностью, называют бесконечным цилиндром. Рассекая некоторой трёхмерной поверхностью без самопересечений цилиндрическую поверхность так, что секущая поверхность каждую образующую цилиндрической поверхности пересекает ровно один раз, получае
Слайд 8

Тело, ограниченное замкнутой бесконечной цилиндрической поверхностью, называют бесконечным цилиндром. Рассекая некоторой трёхмерной поверхностью без самопересечений цилиндрическую поверхность так, что секущая поверхность каждую образующую цилиндрической поверхности пересекает ровно один раз, получаем две бесконечные поверхности, каждая из которых равна другой и называется цилиндрическим лучом. Сечение называется основанием цилиндрического луча. Прямые лучи, образующие поверхность, наследуют название образующих. Тело, ограниченное замкнутым цилиндрическим лучом и его основанием, называется открытым цилиндром. Параллельно перенеся секущую поверхность по образующей цилиндрического луча и произведя новое сечение, получим две поверхности: цилиндрический луч, равный исходному (в силу бесконечности), и новую, конечную, поверхность, называемую конечной цилиндрической поверхностью. Тело, ограниченное замкнутой конечной цилиндрической поверхностью и двумя сечениями, благодаря которым она была получена, называется цилиндром.

Осевое сечение цилиндра. Цилиндр получен вращением прямоугольника ABCD вокруг стороны АВ. Сечение цилиндра плоскостью, перпендикулярной к оси.
Слайд 9

Осевое сечение цилиндра

Цилиндр получен вращением прямоугольника ABCD вокруг стороны АВ.

Сечение цилиндра плоскостью, перпендикулярной к оси.

Цилиндрическая поверхность — поверхность, образуемая движением прямой (в каждом своём положении называемой образующей) вдоль кривой (называемой направляющей) так, что прямая постоянно остаётся параллельной своему начальному положению. Цилиндрические поверхности являются частным случаем линейчатых по
Слайд 10

Цилиндрическая поверхность — поверхность, образуемая движением прямой (в каждом своём положении называемой образующей) вдоль кривой (называемой направляющей) так, что прямая постоянно остаётся параллельной своему начальному положению. Цилиндрические поверхности являются частным случаем линейчатых поверхностей. У цилиндрической поверхности бесконечно много разнообразных направляющих (изоморфных друг другу). Характеристикой направляющей кривой, качественно влияющей на цилиндирическую поверхность, является замкнутость: если направляющая кривая замкнута, цилиндрическая поверхность называется замкнутой, и разомкнутой в противоположном случае. Частным видом цилиндрической поверхности является призматическая.

Цилиндрическая поверхность.

К математическим курьёзам относят определение любой конечной трёхмерной поверхности без самопересечений как цилиндра нулевой высоты (данную поверхность считают одновременно обоими основаниями конечного цилиндра). Основания цилиндра качественно влияют на цилиндр. Если основания цилиндра плоские (и, с
Слайд 11

К математическим курьёзам относят определение любой конечной трёхмерной поверхности без самопересечений как цилиндра нулевой высоты (данную поверхность считают одновременно обоими основаниями конечного цилиндра). Основания цилиндра качественно влияют на цилиндр. Если основания цилиндра плоские (и, следовательно, содержащие их плоскости параллельны), то цилиндр называют стоящим на плоскости. Если основания стоящего на плоскости цилиндра перпендикулярны образующей, то цилиндр называется прямым. В частности, если основание стоящего на плоскости цилиндра — круг, то говорят о круговом (круглом) цилиндре; если эллипс — то эллиптическом. Объём прямого цилиндра равен интегралу площади основания по образующей. В частности, объём прямого кругового цилиндра равен (где — радиус основания, — высота). Площадь боковой поверхности цилиндра считается по следующей формуле: .Площадь полной поверхности цилиндра складывается из площади боковой поверхности и площади оснований. Для прямого кругового цилиндра:

О цилиндре.

Конец!
Слайд 12

Конец!

Список похожих презентаций

Цилиндр (задача В-9)

Цилиндр (задача В-9)

Объем – это количественная характеристика тела, удовлетворяющая следующим свойствам:. Каждое тело имеет определенный объем, выраженный положительным ...
Цилиндр как геометрическая фигура

Цилиндр как геометрическая фигура

Цилиндром называется тело, кото-рое состоит из двух кругов, не ле-жащих в одной плоскости и сов-мещаемых параллельным пере-носом, и всех отрезков, ...
Цилиндр

Цилиндр

Обобщающий урок-игра по теме: "Цилиндр". «Не стыдись спросить – не знать еще стыднее!» Японская пословица. В игре участвуют 2 команды. Капитан команды ...
Цилиндр

Цилиндр

Цилиндр. Цилиндром называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, ...
Цилиндр

Цилиндр

Геометрия 11 класс Тема: Цилиндр. Теоретический материал Задачи. Тема: Цилиндр. 1.Примеры цилиндров. 2.Понятие цилиндрической поверхности. 1 2 3. ...
Цилиндр

Цилиндр

ЦИЛИНДР. Прямая АВ называется осью цилиндра Отрезок СD является высотой При вращении CD образуется поверхность, состоящая из отрезков, параллельных ...
Цилиндр

Цилиндр

Определение цилиндра. Цилиндром называется тело, которое состоит из двух кругов , не лежащих в одной плоскости и совмещаемых параллельным переносом, ...
Цилиндр

Цилиндр

Введение. Основная часть. Что называют цилиндром? (из истории). Различные определения. Выпуклый цилиндр. Свойства цилиндра. Прямой цилиндр Площадь ...
Цилиндр

Цилиндр

Цилиндром (точнее, прямым круговым цилиндром) называется тело вращения, полученное при вращении прямоугольника вокруг оси, проходящей через одну из ...
Цилиндр

Цилиндр

Геометрия 11 класс Тема: Цилиндр. Теоретический материал Задачи. Тема: Цилиндр. 1.Примеры цилиндров. 2.Понятие цилиндрической поверхности. 1 2 3. ...
Тела вращения. Цилиндр

Тела вращения. Цилиндр

о. Длина окружности: C=2πr. Площадь круга: r d Окружность и круг. Как получить цилиндр из прямоугольника. Прямой круговой цилиндр- это тело, получаемое ...
Цилиндр, шар, конус

Цилиндр, шар, конус

Тело, ограниченное цилиндрической поверхностью и двумя кругами, называется цилиндром. Цилиндрическая поверхность называется боковой поверхностью цилиндра. ...
Шар. Конус. Цилиндр

Шар. Конус. Цилиндр

Шар. Конус. Цилиндр. 6 класс. Какая фигура лишняя? Почему? Найдите объём аквариума. От куба отрезали угол. Сколько граней у получившейся фигуры? Цилиндр. ...
Объём. Цилиндр, призма

Объём. Цилиндр, призма

В цилиндрический сосуд налили 1200 см3 воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. При этом уровень ...
Решение задач по теме Цилиндр

Решение задач по теме Цилиндр

L m. Общая цилиндрическая поверхность, её направляющая L и образующая m. Общее определение цилиндрического тела.  1. Наклонный круговой цилиндр. ...
Построение сечений многогранников геометрия

Построение сечений многогранников геометрия

Обучающая цель: формирование умений и навыков построения сечений. Развивающая цель: формирование и развитие у учащихся пространственного представления. ...
Поворот и геометрия

Поворот и геометрия

ВСПОМИНАЕМ. Что называют параллельным переносом на заданный вектор? На что при параллельном переносе отображается прямая? Является ли параллельный ...
Перпендикулярность в пространстве геометрия

Перпендикулярность в пространстве геометрия

Цель:. Познакомиться с перпендикулярностью в пространстве. Проанализировать различные источники по данной теме. Выделить основные подходы к рассмотрению ...
Неевклидова геометрия

Неевклидова геометрия

Мы выбрали эту тему так как она нас очень заинтересовала тем , что геометрия Лобачевского очень полезна в современном мире, и мы хотим немного рассказать ...
Небесная геометрия

Небесная геометрия

Цели и задачи. Цель: дать физическое и математическое обоснование разнообразия форм снежинок. Задачи: изучить историю появления фотографий с изображениями ...

Конспекты

Цилиндр, конус. Решение задач

Цилиндр, конус. Решение задач

Муниципальное бюджетное образовательное учреждение. «Гимназия № 7». г. Норильска Красноярского края. Урок математики по ...
Цилиндр, его элементы

Цилиндр, его элементы

Тема урока: Цилиндр, его элементы. . . Цель урока:. . . закрепление у учащихся знаний о теле вращения – цилиндре ( элементы цилиндра, формулы ...
Цилиндр, его определение, элементы и их свойства

Цилиндр, его определение, элементы и их свойства

Урок в 11 классе по учебнику «Геометрия 10-11» А. В. Погорелова,. пункт 52-54 год издания 2008-2012. . Тема: «. Цилиндр, его определение, элементы ...
Цилиндр

Цилиндр

Тема урока: «Цилиндр». Автор: Попович Наталия Викторовна. учитель математики. Гимназия №56. Санкт-Петербург. Методическая основа –. планирование, ...
Цилиндр

Цилиндр

Урок по геометрии на тему: «Цилиндр». 11 класс. Цели. Познакомить учащихся с новыми понятиями: цилиндрическая поверхность, цилиндр, основания ...
Тела вращения. Цилиндр

Тела вращения. Цилиндр

Урок геометрии в 11 классе. Тема «. Тела вращения. Цилиндр. ». ФИО (полностью). . Козлова Лидия Николаевна. . . Место работы. . ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:19 февраля 2019
Категория:Математика
Содержит:12 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации