- Теория электролитической диссоциации.

Презентация "Теория электролитической диссоциации." по химии – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56
Слайд 57
Слайд 58
Слайд 59
Слайд 60
Слайд 61
Слайд 62
Слайд 63
Слайд 64
Слайд 65
Слайд 66
Слайд 67
Слайд 68
Слайд 69
Слайд 70
Слайд 71
Слайд 72
Слайд 73
Слайд 74
Слайд 75
Слайд 76
Слайд 77
Слайд 78
Слайд 79
Слайд 80
Слайд 81
Слайд 82
Слайд 83
Слайд 84
Слайд 85
Слайд 86
Слайд 87
Слайд 88
Слайд 89
Слайд 90
Слайд 91
Слайд 92
Слайд 93
Слайд 94

Презентацию на тему "Теория электролитической диссоциации." можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Химия. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 94 слайд(ов).

Слайды презентации

Теория электролитической диссоциации. Протолитическая теория кислот и оснований. Специальность: «Лабораторная диагностика» Дисциплина: «Химия» Преподаватель: Шакурова Н.С. 2010 г. ГАОУ СПО «Казанский медицинский колледж». Электронный дидактический материал информационного типа на тему:
Слайд 1

Теория электролитической диссоциации. Протолитическая теория кислот и оснований. Специальность: «Лабораторная диагностика» Дисциплина: «Химия» Преподаватель: Шакурова Н.С. 2010 г.

ГАОУ СПО «Казанский медицинский колледж»

Электронный дидактический материал информационного типа на тему:

Содержание ЭДМ. Введение. Требования ГОС. Цели занятия. Электролиты. Неэлектролиты С.Аррениус-основоположник теории электролитической диссоциации Основные положения электролитической диссоциации Гидратация ионов Механизм электролитической диссоциации. Степень диссоциации (ионизации) Сильные и слабые
Слайд 2

Содержание ЭДМ

Введение. Требования ГОС. Цели занятия. Электролиты. Неэлектролиты С.Аррениус-основоположник теории электролитической диссоциации Основные положения электролитической диссоциации Гидратация ионов Механизм электролитической диссоциации. Степень диссоциации (ионизации) Сильные и слабые электролиты Факторы, влияющие на диссоциацию Константа диссоциации (ионизации)

13. Диссоциация кислот 14. Диссоциация оснований 15. Диссоциация амфотерных гидроксидов 16. Диссоциация солей 17.Электролитическая диссоциация комплексных и двойных солей 18. Протонная теория кислот и оснований 19. Диссоциация воды. рН 20. Реакции обмена в водных растворах электролитов 21. Ионные ре
Слайд 3

13. Диссоциация кислот 14. Диссоциация оснований 15. Диссоциация амфотерных гидроксидов 16. Диссоциация солей 17.Электролитическая диссоциация комплексных и двойных солей 18. Протонная теория кислот и оснований 19. Диссоциация воды. рН 20. Реакции обмена в водных растворах электролитов 21. Ионные реакции и уравнения 22. Термины и определения 23. Литература.

Введение. Электронный дидактический материал на тему: «Теория электролитической диссоциации. Протолитическая теория кислот и оснований» предназначен для проведения контроля знаний, практических умений и навыков, самостоятельной работы студентов медицинских училищ и колледжей СМОУ РТ и РФ. Рекомендац
Слайд 4

Введение

Электронный дидактический материал на тему: «Теория электролитической диссоциации. Протолитическая теория кислот и оснований» предназначен для проведения контроля знаний, практических умений и навыков, самостоятельной работы студентов медицинских училищ и колледжей СМОУ РТ и РФ. Рекомендации по работе с ЭДМ: 1. Ознакомьтесь с требованиями ГОС по данной теме 2. Изучите информационный материал занятия. 3. Выучите термины и определения. 4. Выполните задания для закрепления знаний по учебнику Ерохин Ю.М. Сборник задач и упражнений - стр.-55 вопросы 1-12; упр.1-14.

Требования ГОС к уровню подготовки специалистов в области химии для специальности «Лабораторная диагностика». После изучения темы «Теория электролитической диссоциации. Протолитическая теория кислот и оснований». студент должен ЗНАТЬ: основные положения теории электролитической диссоциации; понятия:
Слайд 5

Требования ГОС к уровню подготовки специалистов в области химии для специальности «Лабораторная диагностика»

После изучения темы «Теория электролитической диссоциации. Протолитическая теория кислот и оснований». студент должен ЗНАТЬ: основные положения теории электролитической диссоциации; понятия: электролитическая диссоциация, сильный и слабый электролит, степень и константа диссоциации, кислота и основания Бренстеда; роль электролитов в процессах жизнедеятельности организма.

Цели занятия. Учебная: добиться прочного усвоения системы знаний, формирование практических умений и навыков. Развивающая: формирование навыков самообразования, самореализации личности и развитие речи, мышления, памяти. Воспитательная: привитие умений и навыков учебной работы и коллективного труда.
Слайд 6

Цели занятия

Учебная: добиться прочного усвоения системы знаний, формирование практических умений и навыков. Развивающая: формирование навыков самообразования, самореализации личности и развитие речи, мышления, памяти. Воспитательная: привитие умений и навыков учебной работы и коллективного труда. Формирование у студентов целостного миропонимания и современного научного мировоззрения.

Электролиты. Неэлектролиты. Водные растворы солей, кислот и оснований проводят электрический ток. Аналогично ведут себя расплавы солей и щелочей. В то же время водные растворы и расплавы многих органических веществ, например сахарозы, глюкозы, ацетона, этилового спирта и других, не проводят электрич
Слайд 7

Электролиты. Неэлектролиты

Водные растворы солей, кислот и оснований проводят электрический ток. Аналогично ведут себя расплавы солей и щелочей. В то же время водные растворы и расплавы многих органических веществ, например сахарозы, глюкозы, ацетона, этилового спирта и других, не проводят электрический ток.

По способности проводить электрический ток в водном растворе или в расплаве все вещества можно разделить на электролиты и неэлектролиты. Электролитами называют вещества, водные растворы или расплавы которых проводят электрический ток.
Слайд 8

По способности проводить электрический ток в водном растворе или в расплаве все вещества можно разделить на электролиты и неэлектролиты. Электролитами называют вещества, водные растворы или расплавы которых проводят электрический ток.

К электролитам относятся соли, кислоты и основания. В молекулах этих веществ имеются ионные или ковалентные сильно полярные химические связи.
Слайд 9

К электролитам относятся соли, кислоты и основания. В молекулах этих веществ имеются ионные или ковалентные сильно полярные химические связи.

Неэлектролитами называют вещества, водные растворы или расплавы которых не проводят электрический ток. К неэлектролитам относятся, например, кислород, водород, многие органические вещества. В молекулах этих веществ существуют ковалентные неполярные или малополярные связи.
Слайд 10

Неэлектролитами называют вещества, водные растворы или расплавы которых не проводят электрический ток. К неэлектролитам относятся, например, кислород, водород, многие органические вещества. В молекулах этих веществ существуют ковалентные неполярные или малополярные связи.

В 1887г. Шведский учёный С.Аррениус для объяснения особенностей водных растворов веществ предложил теорию электролитической диссоциации. В дальнейшем эта теория была развита многими учёными, в том числе И.А. Каблуковым и В.А. Кистяковским. Сванте Аррениус. С.Аррениус-основоположник теории электролит
Слайд 11

В 1887г. Шведский учёный С.Аррениус для объяснения особенностей водных растворов веществ предложил теорию электролитической диссоциации. В дальнейшем эта теория была развита многими учёными, в том числе И.А. Каблуковым и В.А. Кистяковским.

Сванте Аррениус

С.Аррениус-основоположник теории электролитической диссоциации

Основные положения электролитической диссоциации. 1.Молекулы электролитов при растворении в воде или расплавлении распадаются на ионы. Процесс распада молекул электролитов на ионы в водном растворе или в расплаве называется электролитической диссоциацией или ионизацией.
Слайд 12

Основные положения электролитической диссоциации

1.Молекулы электролитов при растворении в воде или расплавлении распадаются на ионы. Процесс распада молекул электролитов на ионы в водном растворе или в расплаве называется электролитической диссоциацией или ионизацией.

Ионы — это атомы или группы атомов, имеющие положительный или отрицательный заряд. Ионы могут быть простые (Na+, Mg2+ , S2-, Cl- ): сложные (SO32-, NH4+, SO42-, PO43-).
Слайд 13

Ионы — это атомы или группы атомов, имеющие положительный или отрицательный заряд. Ионы могут быть простые (Na+, Mg2+ , S2-, Cl- ): сложные (SO32-, NH4+, SO42-, PO43-).

2.	В растворе или расплаве электролитов ионы движутся хаотически. При пропускании через раствор или расплав электрического тока положительно заряженные ионы движутся к отрицательно заряженному электроду (катоду), а отрицательно заряженные ионы движутся к положительно заряженному электроду (аноду).
Слайд 14

2. В растворе или расплаве электролитов ионы движутся хаотически. При пропускании через раствор или расплав электрического тока положительно заряженные ионы движутся к отрицательно заряженному электроду (катоду), а отрицательно заряженные ионы движутся к положительно заряженному электроду (аноду).

Положительные ионы называются катионами, отрицательные ионы-анионами. К катионам относятся ион водорода Н+, ион аммония NH4+, ионы металлов Na+, K+, Fe2+,Fe3+, Al3+, катионы основных солей CuOH+, A1(OH)2+, FeOH2+ К анионам относятся гидроксид-ион ОН-, ионы кислотных остатков I-, Вr-, Сl-, NO3-, SO32
Слайд 15

Положительные ионы называются катионами, отрицательные ионы-анионами. К катионам относятся ион водорода Н+, ион аммония NH4+, ионы металлов Na+, K+, Fe2+,Fe3+, Al3+, катионы основных солей CuOH+, A1(OH)2+, FeOH2+ К анионам относятся гидроксид-ион ОН-, ионы кислотных остатков I-, Вr-, Сl-, NO3-, SO32-, Сr2О7 ; кислых солей НСО3-, Н2РО4-, Н2РО4-

Диссоциация многих электролитов —процесс обратимый. Это значит, что одновременно идут два противоположных процесса: распад молекул на ионы (ионизация или диссоциация) и соединение ионов в молекулы (ассоциация или моляризация).
Слайд 16

Диссоциация многих электролитов —процесс обратимый. Это значит, что одновременно идут два противоположных процесса: распад молекул на ионы (ионизация или диссоциация) и соединение ионов в молекулы (ассоциация или моляризация).

Диссоциацию молекул электролитов выражают уравнениями, в которых ставят знак обратимости ( ). В левой части уравнения электролитической диссоциации записывают формулу молекулы электролита, а в правой — формулы образующихся ионов.
Слайд 17

Диссоциацию молекул электролитов выражают уравнениями, в которых ставят знак обратимости ( ). В левой части уравнения электролитической диссоциации записывают формулу молекулы электролита, а в правой — формулы образующихся ионов.

Уравнение диссоциации азотистой кислоты HNO2 записывается таким образом: ионизация (диссоциация) НNO2 H+ + NO2- моляризация (ассоциация) Общая сумма зарядов катионов равна общей сумме зарядов анионов, так как растворы и расплавы нейтральны.
Слайд 18

Уравнение диссоциации азотистой кислоты HNO2 записывается таким образом: ионизация (диссоциация) НNO2 H+ + NO2- моляризация (ассоциация) Общая сумма зарядов катионов равна общей сумме зарядов анионов, так как растворы и расплавы нейтральны.

Гидратация ионов. Электролитическая диссоциация в растворе происходит за счет сложного физико-химического взаимодействия молекул растворителя с электролитом.
Слайд 19

Гидратация ионов

Электролитическая диссоциация в растворе происходит за счет сложного физико-химического взаимодействия молекул растворителя с электролитом.

Согласно химической теории растворов Д.И. Менделеева, при растворении веществ в воде происходит химическое взаимодействие растворенного вещества с молекулами воды.
Слайд 20

Согласно химической теории растворов Д.И. Менделеева, при растворении веществ в воде происходит химическое взаимодействие растворенного вещества с молекулами воды.

В результате взаимодействия растворенного вещества с молекулами воды образуются химические соединения -гидраты. И.А. Каблуков развил это положение Д.И. Менделеева, впервые высказав мысль о возможной гидратации не только молекул, но и ионов, которые особенно склонны к гидратации. Соединяясь с молекул
Слайд 21

В результате взаимодействия растворенного вещества с молекулами воды образуются химические соединения -гидраты. И.А. Каблуков развил это положение Д.И. Менделеева, впервые высказав мысль о возможной гидратации не только молекул, но и ионов, которые особенно склонны к гидратации. Соединяясь с молекулами воды, ионы становятся гидратированными и более устойчивыми.

Механизм электролитической диссоциации. I. Диссоциация электролитов с ионной связью. При растворении в воде ионных соединений, например, хлорида натрия, его ионы, находящиеся в узлах кристаллической решетки, взаимодействуют с диполями воды. При этом положительные полюсы молекул воды притягиваются к
Слайд 22

Механизм электролитической диссоциации.

I. Диссоциация электролитов с ионной связью. При растворении в воде ионных соединений, например, хлорида натрия, его ионы, находящиеся в узлах кристаллической решетки, взаимодействуют с диполями воды. При этом положительные полюсы молекул воды притягиваются к отрицательным хлорид-ионам С1-, отрицательные полюсы - к положительным ионам натрия Na+.

Между ионами электролита и диполями воды возникают силы взаимного притяжения, которые оказываются прочнее межионных связей в кристалле. В результате связь между ионами в кристалле ослабляется, кристаллическая решетка ионного соединения разрушается, и ионы в гидратированном виде переходят в раствор N
Слайд 23

Между ионами электролита и диполями воды возникают силы взаимного притяжения, которые оказываются прочнее межионных связей в кристалле. В результате связь между ионами в кристалле ослабляется, кристаллическая решетка ионного соединения разрушается, и ионы в гидратированном виде переходят в раствор NaCl Na+ + Cl-

При растворении в воде веществ НС1 происходит ориентация диполей воды и возникают междипольные связи. В результате такого диполь-дипольного взаимодействия изменяется характер химической связи в молекуле НС1. Механизм электролитической диссоциации. Диссоциации электролитов с полярной ковалентной связ
Слайд 24

При растворении в воде веществ НС1 происходит ориентация диполей воды и возникают междипольные связи. В результате такого диполь-дипольного взаимодействия изменяется характер химической связи в молекуле НС1.

Механизм электролитической диссоциации

Диссоциации электролитов с полярной ковалентной связью.

Связь в молекуле электролита становится более полярной, а затем превращается в ионную. Эта связь легко разрывается с образованием гидратированных ионов, которые переходят в раствор. Главной причиной диссоциации молекул электролитов на ионы в водных растворах является гидратация ионов.
Слайд 25

Связь в молекуле электролита становится более полярной, а затем превращается в ионную. Эта связь легко разрывается с образованием гидратированных ионов, которые переходят в раствор. Главной причиной диссоциации молекул электролитов на ионы в водных растворах является гидратация ионов.

Степень диссоциации (ионизации). В водных растворах некоторые электролиты полностью распадаются на ионы. Другие электролиты распадаются на ионы частично. Большая часть их молекул остается в растворе в недиссоциированном виде. В растворах таких электролитов одновременно присутствуют ионы и недиссоции
Слайд 26

Степень диссоциации (ионизации)

В водных растворах некоторые электролиты полностью распадаются на ионы. Другие электролиты распадаются на ионы частично. Большая часть их молекул остается в растворе в недиссоциированном виде. В растворах таких электролитов одновременно присутствуют ионы и недиссоциированные молекулы растворенного вещества.

Для количественной характеристики соотношения диссоциированных и недиссоциированных молекул электролита используют понятие «степень электролитической диссоциации». Степень диссоциации обозначают буквой «α» и часто выражают в процентах, реже в долях единицы.
Слайд 27

Для количественной характеристики соотношения диссоциированных и недиссоциированных молекул электролита используют понятие «степень электролитической диссоциации». Степень диссоциации обозначают буквой «α» и часто выражают в процентах, реже в долях единицы.

Степень электролитической диссоциации равна отношению числа молекул, которые распались на ионы, к общему числу растворенных молекул электролита: где n - число молекул, распавшихся на ионы; N - общее число растворенных молекул.
Слайд 28

Степень электролитической диссоциации равна отношению числа молекул, которые распались на ионы, к общему числу растворенных молекул электролита: где n - число молекул, распавшихся на ионы; N - общее число растворенных молекул.

Степень диссоциации зависит от природы растворителя и природы растворенного вещества. Одно и то же вещество в одних растворителях может вести себя как электролит, в других — как неэлектролит.
Слайд 29

Степень диссоциации зависит от природы растворителя и природы растворенного вещества. Одно и то же вещество в одних растворителях может вести себя как электролит, в других — как неэлектролит.

Молекулы серной кислоты H2SO4 хорошо диссоциируют в воде, слабее в этаноле и совсем не диссоциируют в бензоле. Это объясняется тем, что вода является одним из наиболее полярных растворителей, этанол — слабополярный, а бензол — неполярный растворитель.
Слайд 30

Молекулы серной кислоты H2SO4 хорошо диссоциируют в воде, слабее в этаноле и совсем не диссоциируют в бензоле. Это объясняется тем, что вода является одним из наиболее полярных растворителей, этанол — слабополярный, а бензол — неполярный растворитель.

Сильные электролиты — это такие электролиты, для которых степень диссоциации в водных растворах равна 1 (100%). К сильным электролитам относятся: 1. Практически все соли; 2. Кислоты - НС1О4, НС1О3, HNO3, H2SO4, HMnO4, H2Cr2О7, HI, HBr, НС1, H2CrО4; 3. Щелочи- LiOH, NaOH, KOH, CsOH, RbOH, Ca(OH)2 ,Sr
Слайд 31

Сильные электролиты — это такие электролиты, для которых степень диссоциации в водных растворах равна 1 (100%). К сильным электролитам относятся: 1. Практически все соли; 2. Кислоты - НС1О4, НС1О3, HNO3, H2SO4, HMnO4, H2Cr2О7, HI, HBr, НС1, H2CrО4; 3. Щелочи- LiOH, NaOH, KOH, CsOH, RbOH, Ca(OH)2 ,Sr(OH)2, Ba(OH)2.

Сильные и слабые электролиты

Слабые электролиты — это такие электролиты, для которых степень диссоциации в водных растворах меньше 1 (100%).
Слайд 32

Слабые электролиты — это такие электролиты, для которых степень диссоциации в водных растворах меньше 1 (100%).

К слабым электролитам относятся: 1. Слабые кислоты - НС1О2, НС1О, HNO2, H2CO3, H2SiО3, H3PO4, HF, H3BO3; CH3COOH, H3S, HCN 2. Слабые малорастворимые в воде основания и амфотерные гидроксиды: Fe(OH)2 Fe(OH)3 Cu(OH)2 Pb(OH)2, A1(OH)3, Cr(OH)3; 3. Вода Н2О. 4. NH4 OH.
Слайд 33

К слабым электролитам относятся: 1. Слабые кислоты - НС1О2, НС1О, HNO2, H2CO3, H2SiО3, H3PO4, HF, H3BO3; CH3COOH, H3S, HCN 2. Слабые малорастворимые в воде основания и амфотерные гидроксиды: Fe(OH)2 Fe(OH)3 Cu(OH)2 Pb(OH)2, A1(OH)3, Cr(OH)3; 3. Вода Н2О. 4. NH4 OH.

Принадлежность вещества к сильным и слабым электролитам нельзя связывать с его растворимостью. Например, хлорид серебра AgCl имеет очень низкую растворимость в воде, однако вся растворившаяся соль находится в растворе в виде ионов Ag+ и С1-, поэтому AgCl относят к числу сильных электролитов.
Слайд 34

Принадлежность вещества к сильным и слабым электролитам нельзя связывать с его растворимостью. Например, хлорид серебра AgCl имеет очень низкую растворимость в воде, однако вся растворившаяся соль находится в растворе в виде ионов Ag+ и С1-, поэтому AgCl относят к числу сильных электролитов.

Газ аммиак NH3 очень хорошо растворяется в воде, но только часть молекул NH3 взаимодействуют с водой с образованием ионов NH4+ и ОН-. Значит гидроксид аммония является слабым электролитом.
Слайд 35

Газ аммиак NH3 очень хорошо растворяется в воде, но только часть молекул NH3 взаимодействуют с водой с образованием ионов NH4+ и ОН-. Значит гидроксид аммония является слабым электролитом.

Степень ионизации электролита зависит от его концентрации в растворе. Разбавление раствора ведет к повышению степени диссоциации электролита, потому что с уменьшением его концентрации уменьшается вероятность встречи ионов в растворе. Повышение концентрации электролита в растворе понижает степень его
Слайд 36

Степень ионизации электролита зависит от его концентрации в растворе. Разбавление раствора ведет к повышению степени диссоциации электролита, потому что с уменьшением его концентрации уменьшается вероятность встречи ионов в растворе. Повышение концентрации электролита в растворе понижает степень его ионизации.

Факторы, влияющие на диссоциацию

Степень ионизации зависит и от изменения температуры раствора электролита. При повышении температуры степень диссоциации электролита увеличивается.
Слайд 37

Степень ионизации зависит и от изменения температуры раствора электролита. При повышении температуры степень диссоциации электролита увеличивается.

С повышением температуры энергия молекул увеличивается, химическая связь в них ослабляется, что облегчает процесс диссоциации электролитов, то есть их распад на ионы. И наоборот, понижение температуры уменьшает степень ионизации электролита.
Слайд 38

С повышением температуры энергия молекул увеличивается, химическая связь в них ослабляется, что облегчает процесс диссоциации электролитов, то есть их распад на ионы. И наоборот, понижение температуры уменьшает степень ионизации электролита.

На степень диссоциации влияет добавление одноименных ионов к раствору слабого электролита. Например, если к раствору уксусной кислоты СН3СО-ОН прилить раствор ацетата натрия CH3COONa, то равновесие обратимого процесса диссоциации уксусной кислоты СН3СООН СН3СОО- + Н+ согласно принципу Ле-Шателье сме
Слайд 39

На степень диссоциации влияет добавление одноименных ионов к раствору слабого электролита. Например, если к раствору уксусной кислоты СН3СО-ОН прилить раствор ацетата натрия CH3COONa, то равновесие обратимого процесса диссоциации уксусной кислоты СН3СООН СН3СОО- + Н+ согласно принципу Ле-Шателье смещается влево. Поэтому степень диссоциации уксусной кислоты уменьшается.

Константа диссоциации (ионизации). Для количественной характеристики слабых электролитов применяют константу диссоциации (К). Любая обратимая реакция характеризуется константой равновесия. В случае диссоциации константу равновесия называют константой диссоциации (Кд) или константой ионизации.
Слайд 40

Константа диссоциации (ионизации)

Для количественной характеристики слабых электролитов применяют константу диссоциации (К). Любая обратимая реакция характеризуется константой равновесия. В случае диссоциации константу равновесия называют константой диссоциации (Кд) или константой ионизации.

Для слабого электролита общей формулы: AnBm AnBm пАm+ + mBn- согласно закону действия масс, в состоянии равновесия, константа диссоциации равна: Кд=[Аm+]n ∙ [Bn-]m [AnBm]
Слайд 41

Для слабого электролита общей формулы: AnBm AnBm пАm+ + mBn- согласно закону действия масс, в состоянии равновесия, константа диссоциации равна: Кд=[Аm+]n ∙ [Bn-]m [AnBm]

Величина константы ионизации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в его растворе, тем сильнее электролит. Например: Кд(СН3СООН)=[СН3СОО-] ∙ [Н+] = 2∙10-5; [СН3СООН] Кд(HCN)= [Н+] ∙ [CN-] = 7∙10-10 при25°С. [HCN]
Слайд 42

Величина константы ионизации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в его растворе, тем сильнее электролит. Например: Кд(СН3СООН)=[СН3СОО-] ∙ [Н+] = 2∙10-5; [СН3СООН] Кд(HCN)= [Н+] ∙ [CN-] = 7∙10-10 при25°С. [HCN]

Из значений констант диссоциации этих кислот видно, что уксусная кислота приблизительно в 30 000 раз сильнее диссоциирует, чем циановодородная кислота. Константа диссоциации не зависит от концентрации раствора.
Слайд 43

Из значений констант диссоциации этих кислот видно, что уксусная кислота приблизительно в 30 000 раз сильнее диссоциирует, чем циановодородная кислота. Константа диссоциации не зависит от концентрации раствора.

Для любой концентрации раствора электролита величина константы ионизации постоянна, но изменяется с изменением температуры. Понятие константы диссоциации для сильных электролитов не имеет смысла, так как в водных растворах они полностью диссоциируют на ионы.
Слайд 44

Для любой концентрации раствора электролита величина константы ионизации постоянна, но изменяется с изменением температуры. Понятие константы диссоциации для сильных электролитов не имеет смысла, так как в водных растворах они полностью диссоциируют на ионы.

Диссоциация кислот. Кислоты — это электролиты, которые при диссоциации образуют только один вид катионов — катионы водорода Н+. Например: H2SO4 = 2Н++ SO42- Слабые многоосновные кислоты (H2SO3, Н2СО3, H2S, Н3РО4) диссоциируют ступенчато и характеризуются несколькими константами диссоциации.
Слайд 45

Диссоциация кислот

Кислоты — это электролиты, которые при диссоциации образуют только один вид катионов — катионы водорода Н+. Например: H2SO4 = 2Н++ SO42- Слабые многоосновные кислоты (H2SO3, Н2СО3, H2S, Н3РО4) диссоциируют ступенчато и характеризуются несколькими константами диссоциации.

Число ступеней диссоциации равно основности слабой кислоты. На первой ступени диссоциации сероводородной кислоты: H2S Н+ + HS-, К΄д=[Н+] ∙ [HS-] = 6,0 ∙10-8 [H2S]
Слайд 46

Число ступеней диссоциации равно основности слабой кислоты. На первой ступени диссоциации сероводородной кислоты: H2S Н+ + HS-, К΄д=[Н+] ∙ [HS-] = 6,0 ∙10-8 [H2S]

На второй ступени диссоциации от сложного гидросульфид-иона HS- отщепляется катион водорода Н+по уравнению: HS- Н+ + S2-, К΄΄д(HS-)= [Н+] ∙ [S2-] = 1,0 ∙10-14. [HS-]
Слайд 47

На второй ступени диссоциации от сложного гидросульфид-иона HS- отщепляется катион водорода Н+по уравнению: HS- Н+ + S2-, К΄΄д(HS-)= [Н+] ∙ [S2-] = 1,0 ∙10-14. [HS-]

К΄΄д(HS-)=[Н+] ∙ [S2-] = 1,0 ∙10-14 [HS-] Сравнение величин К΄д и К˝д показывает, что диссоциация по второй ступени протекает в значительно меньшей степени, чем по первой.
Слайд 48

К΄΄д(HS-)=[Н+] ∙ [S2-] = 1,0 ∙10-14 [HS-] Сравнение величин К΄д и К˝д показывает, что диссоциация по второй ступени протекает в значительно меньшей степени, чем по первой.

Диссоциация оснований. Основания — это электролиты, которые при диссоциации образуют только один вид анионов — гидроксид-ионы ОН-. Например: NaOH = Na++ OH-
Слайд 49

Диссоциация оснований

Основания — это электролиты, которые при диссоциации образуют только один вид анионов — гидроксид-ионы ОН-. Например: NaOH = Na++ OH-

Слабые многокислотные основания диссоциируют ступенчато и характеризуются несколькими константами диссоциации. Число ступеней диссоциации равно кислотности слабого основания. Рb(ОН)2 РbОН2++ОН- д=[РbОН+] ∙ [ОН-] =9,6 ∙10-4(tо=25оС ) [Рb(ОН)2 ]
Слайд 50

Слабые многокислотные основания диссоциируют ступенчато и характеризуются несколькими константами диссоциации. Число ступеней диссоциации равно кислотности слабого основания. Рb(ОН)2 РbОН2++ОН- д=[РbОН+] ∙ [ОН-] =9,6 ∙10-4(tо=25оС ) [Рb(ОН)2 ]

На второй ступени диссоциации происходит отщепление гидроксид-иона от сложного катиона РbОН+ Рb(ОН)2 РbОН2++ОН-
Слайд 51

На второй ступени диссоциации происходит отщепление гидроксид-иона от сложного катиона РbОН+ Рb(ОН)2 РbОН2++ОН-

Амфотерные гидроксиды могут реагировать и с кислотами, и с основаниями, то есть имеют двойственные свойства. Двойственный характер амфотерных гидроксидов объясняет теория электролитической диссоциации. Диссоциация амфотерных гидроксидов
Слайд 52

Амфотерные гидроксиды могут реагировать и с кислотами, и с основаниями, то есть имеют двойственные свойства. Двойственный характер амфотерных гидроксидов объясняет теория электролитической диссоциации.

Диссоциация амфотерных гидроксидов

Амфотерные гидроксиды — это слабые электролиты, которые при диссоциации образуют одновременно катионы водорода Н+ и гидроксид-анионы ОН-, т. е. диссоциируют по типу кислоты и по типу основания. 2Н++ZnO22- H2ZnO2 Zn(OH)2 Zn2++2ОН - диссоциация в растворе диссоциация по типу кислоты Zn(OH)2 по типу ос
Слайд 53

Амфотерные гидроксиды — это слабые электролиты, которые при диссоциации образуют одновременно катионы водорода Н+ и гидроксид-анионы ОН-, т. е. диссоциируют по типу кислоты и по типу основания. 2Н++ZnO22- H2ZnO2 Zn(OH)2 Zn2++2ОН - диссоциация в растворе диссоциация по типу кислоты Zn(OH)2 по типу основания (осадок)

Диссоциация солей. Нормальные соли — сильные электролиты, образующие при диссоциации катионы металла и анионы кислотного остатка. Например: Al2(SO4)3 2А13+ + 3SО42-
Слайд 54

Диссоциация солей

Нормальные соли — сильные электролиты, образующие при диссоциации катионы металла и анионы кислотного остатка. Например: Al2(SO4)3 2А13+ + 3SО42-

Кислые соли — сильные электролиты, диссоциирующие на катион металла и сложный анион, в состав которого входят атомы водорода и кислотный остаток. Например: NaHCO3 Na+ + НСО3- (α = 1) Гидрокарбонат-ион в незначительной степени диссоциирует по уравнению: НСО3- Н+ + СО3- (α
Слайд 55

Кислые соли — сильные электролиты, диссоциирующие на катион металла и сложный анион, в состав которого входят атомы водорода и кислотный остаток. Например: NaHCO3 Na+ + НСО3- (α = 1) Гидрокарбонат-ион в незначительной степени диссоциирует по уравнению: НСО3- Н+ + СО3- (α

В водных растворах кислых солей содержатся следующие ионы: катионы металла Меn+, катионы водорода Н+, сложные анионы, содержащие атомы водорода и анионы кислотного остатка Ах-.
Слайд 56

В водных растворах кислых солей содержатся следующие ионы: катионы металла Меn+, катионы водорода Н+, сложные анионы, содержащие атомы водорода и анионы кислотного остатка Ах-.

Основные соли — электролиты, которые при диссоциации образуют анионы кислотного остатка и сложные катионы, состоящие из атомов металла и гидроксогрупп ОН-. Fe(OH)2Cl Fe(OH)2+ + Cl- (α = 1) Fe(OH)2+ FeOH2+ + ОH- (α
Слайд 57

Основные соли — электролиты, которые при диссоциации образуют анионы кислотного остатка и сложные катионы, состоящие из атомов металла и гидроксогрупп ОН-. Fe(OH)2Cl Fe(OH)2+ + Cl- (α = 1) Fe(OH)2+ FeOH2+ + ОH- (α

Основные соли, как и кислые соли, сначала диссоциируют как сильные электролиты. Незначительно диссоциируют сложные ионы. В водных растворах основных солей находятся ионы: катионы металла Меn+, сложные катимы, содержащие гидроксогруппы, анионы кислотного остатка Асх- и анионы гидроксогрупп ОН-.
Слайд 58

Основные соли, как и кислые соли, сначала диссоциируют как сильные электролиты. Незначительно диссоциируют сложные ионы. В водных растворах основных солей находятся ионы: катионы металла Меn+, сложные катимы, содержащие гидроксогруппы, анионы кислотного остатка Асх- и анионы гидроксогрупп ОН-.

Электролитическая диссоциация комплексных и двойных солей. Электролитическая диссоциация комплексных солей в водных растворах происходит по двум ступеням. I	ступень: диссоциация на комплексный и простой ионы с сохранением внутренней сферы комплекса. II	ступень: диссоциация внутренней сферы, приводящ
Слайд 59

Электролитическая диссоциация комплексных и двойных солей

Электролитическая диссоциация комплексных солей в водных растворах происходит по двум ступеням. I ступень: диссоциация на комплексный и простой ионы с сохранением внутренней сферы комплекса. II ступень: диссоциация внутренней сферы, приводящая к разрушению комплекса.

Диссоциация по первой ступени происходит по типу диссоциации сильных электролитов, а диссоциация комплексного иона — по типу диссоциации слабых электролитов. Например: [Ag(NH3)2]Cl [Ag(NH3)2]++C1- (сильный электролит) [Ag(NH3)2]+ Ag+ + 2NH30 (слабый электролит)
Слайд 60

Диссоциация по первой ступени происходит по типу диссоциации сильных электролитов, а диссоциация комплексного иона — по типу диссоциации слабых электролитов. Например: [Ag(NH3)2]Cl [Ag(NH3)2]++C1- (сильный электролит) [Ag(NH3)2]+ Ag+ + 2NH30 (слабый электролит)

Двойные соли могут существовать только в твердом виде, так как в водном растворе они диссоциируют на катионы двух металлов (или аммония) и анионы кислотного остатка: KA1(SO4)2 = К+ + А13+ + 2SO4 2- NH4Fe(SO4)2 = NH4+ + Fe3+ + 2SO4 2-
Слайд 61

Двойные соли могут существовать только в твердом виде, так как в водном растворе они диссоциируют на катионы двух металлов (или аммония) и анионы кислотного остатка: KA1(SO4)2 = К+ + А13+ + 2SO4 2- NH4Fe(SO4)2 = NH4+ + Fe3+ + 2SO4 2-

Протонная теория кислот и оснований. В 1923 г. И. Бренстед и Т. Лоури разработали протонную теорию кислот и оснований. Кислотой называют всякое вещество, молекулярные частицы которого (в том числе и ионы) способны отдавать протон, т. е. быть донором протонов; основанием называют всякое вещество, мол
Слайд 62

Протонная теория кислот и оснований

В 1923 г. И. Бренстед и Т. Лоури разработали протонную теорию кислот и оснований. Кислотой называют всякое вещество, молекулярные частицы которого (в том числе и ионы) способны отдавать протон, т. е. быть донором протонов; основанием называют всякое вещество, молекулярные частицы которого (в том числе и ионы) способны присоединять протоны, т.е. быть акцептором протонов.

Определения кислот и оснований позволяют включать в их число не только молекулы, но и ионы. Например, карбонат-ион согласно протонной теории является основанием, так как в водном растворе он присоединяет протон: CO32- + Н+ НСО3-
Слайд 63

Определения кислот и оснований позволяют включать в их число не только молекулы, но и ионы. Например, карбонат-ион согласно протонной теории является основанием, так как в водном растворе он присоединяет протон: CO32- + Н+ НСО3-

Согласно протонной теории кислоты подразделяют на три типа: нейтральные кислоты, например НС1, Н2SО4 Н3РО4 H2SO4 Н+ + HSO4- 2)	катионные кислоты, представляющие собой положительные ионы, например NH4+ Н3О+: NH4+ NH3 + Н+
Слайд 64

Согласно протонной теории кислоты подразделяют на три типа: нейтральные кислоты, например НС1, Н2SО4 Н3РО4 H2SO4 Н+ + HSO4- 2) катионные кислоты, представляющие собой положительные ионы, например NH4+ Н3О+: NH4+ NH3 + Н+

анионные кислоты, представляющие собой отрицательные ионы, например HSO4-, Н2РО4-, Н2РО2- H2SO4- Н+ + SO42- Подобного типа классификация имеется и для оснований: 1)	нейтральные основания, например HCl, NH3, Н2О, С2Н5ОН NH3 + Н+ NH4+
Слайд 65

анионные кислоты, представляющие собой отрицательные ионы, например HSO4-, Н2РО4-, Н2РО2- H2SO4- Н+ + SO42- Подобного типа классификация имеется и для оснований: 1) нейтральные основания, например HCl, NH3, Н2О, С2Н5ОН NH3 + Н+ NH4+

2)	анионные основания, представляющие собой отрицательные ионы, например: С1-, СН3СОО-, ОН-: СН3СОО- + Н+ СН3СООН катионные основания, представляющие собой положительные ионы, например H2N—NH3+.
Слайд 66

2) анионные основания, представляющие собой отрицательные ионы, например: С1-, СН3СОО-, ОН-: СН3СОО- + Н+ СН3СООН катионные основания, представляющие собой положительные ионы, например H2N—NH3+.

Растворители типа воды, жидкого аммиака, а также анионы многоосновных кислот, которые могут быть и донорами и акцепторами протонов, являются амфолитами. Например, в реакции Н2О + NH3 ОН- + NH4+ молекула воды отдает протон и является кислотой.
Слайд 67

Растворители типа воды, жидкого аммиака, а также анионы многоосновных кислот, которые могут быть и донорами и акцепторами протонов, являются амфолитами. Например, в реакции Н2О + NH3 ОН- + NH4+ молекула воды отдает протон и является кислотой.

В реакции Н2О + НС1 Н3О+ + Сl- молекула воды присоединяет протон и является основанием. Таким образом вода — типичный амфолит.
Слайд 68

В реакции Н2О + НС1 Н3О+ + Сl- молекула воды присоединяет протон и является основанием. Таким образом вода — типичный амфолит.

Процесс диссоциации (ионизации) вещества происходит в контакте с растворителем. При этом растворитель выполняет функцию кислоты или функцию основания. Например, при растворении аммиака вода — кислота NH3 + Н2О NH4+ + ОН- При растворении водородфторида вода — основание HF + Н2О F- + Н3О+
Слайд 69

Процесс диссоциации (ионизации) вещества происходит в контакте с растворителем. При этом растворитель выполняет функцию кислоты или функцию основания. Например, при растворении аммиака вода — кислота NH3 + Н2О NH4+ + ОН- При растворении водородфторида вода — основание HF + Н2О F- + Н3О+

Если сродство к протону у растворителя больше, чем у растворенного вещества, то растворитель выступает как основание (сродство к протону Н2О больше сродства к протону HF), а если оно меньше — как кислота (сродство к протону Н2О меньше сродства к протону NH3).
Слайд 70

Если сродство к протону у растворителя больше, чем у растворенного вещества, то растворитель выступает как основание (сродство к протону Н2О больше сродства к протону HF), а если оно меньше — как кислота (сродство к протону Н2О меньше сродства к протону NH3).

Согласно протонной теории, отдавая протон, кислота превращается в основание, которое называют сопряженным этой кислоте: I.(кислота)1 (сопряженное основание)1 + Н+ т. е. каждой кислоте соответствует сопряженное основание. Наоборот, основание, присоединяя протон, превращается в сопряженную кислоту: II
Слайд 71

Согласно протонной теории, отдавая протон, кислота превращается в основание, которое называют сопряженным этой кислоте: I.(кислота)1 (сопряженное основание)1 + Н+ т. е. каждой кислоте соответствует сопряженное основание. Наоборот, основание, присоединяя протон, превращается в сопряженную кислоту: II.(основание)2 + Н+ (сопряженное основание)2

Кислотно - основное равновесие. Протон в растворах не существует в свободном виде, кислота может отдать протон только основанию, которой приняв протон, становится кислотой. Поэтому, согласно протонной теории имеет место кислотно-основное (КО) равновесие, обусловленное переносом протона (сумма процес
Слайд 72

Кислотно - основное равновесие

Протон в растворах не существует в свободном виде, кислота может отдать протон только основанию, которой приняв протон, становится кислотой. Поэтому, согласно протонной теории имеет место кислотно-основное (КО) равновесие, обусловленное переносом протона (сумма процессов I и II по Гессу): III.(кислота)1+ (основание)2 (кислота)2 + (основание)1

Для краткости обратимый процесс кислотно-основного взаимодействия называют КО-равновесием. Реакции нейтрализации, ионизации, гидролиза с точки зрения протонной теории являются частными случаями КО-равновесий.
Слайд 73

Для краткости обратимый процесс кислотно-основного взаимодействия называют КО-равновесием. Реакции нейтрализации, ионизации, гидролиза с точки зрения протонной теории являются частными случаями КО-равновесий.

Реакция I типа СН3СООН + Н2О СН3СОО-+ Н3О+, протекающая в прямом направлении, представляет ионизацию уксусной кислоты, в обратном же направлении — нейтрализацию какого-либо ацетата, например, натрий ацетата сильной кислотой.
Слайд 74

Реакция I типа СН3СООН + Н2О СН3СОО-+ Н3О+, протекающая в прямом направлении, представляет ионизацию уксусной кислоты, в обратном же направлении — нейтрализацию какого-либо ацетата, например, натрий ацетата сильной кислотой.

Реакция II типа NН4++ Н2О NH3 + H3O+, протекающая в прямом направлении, показывает гидролиз какой-либо соли аммония, а в обратном направлении — нейтрализацию аммиака сильной кислотой. В этих кислотно-основных равновесиях вода играет роль основания.
Слайд 75

Реакция II типа NН4++ Н2О NH3 + H3O+, протекающая в прямом направлении, показывает гидролиз какой-либо соли аммония, а в обратном направлении — нейтрализацию аммиака сильной кислотой. В этих кислотно-основных равновесиях вода играет роль основания.

Будучи амфолитом в других кислотно-основных равновесиях, она может выполнять и роль кислоты, например: Н2О + СН3СОО- СН3СООН + ОН- Здесь прямая реакция кислотно-основного равновесия представляет гидролиз ацетата, а обратная — реакцию нейтрализации уксусной кислоты сильным основанием.
Слайд 76

Будучи амфолитом в других кислотно-основных равновесиях, она может выполнять и роль кислоты, например: Н2О + СН3СОО- СН3СООН + ОН- Здесь прямая реакция кислотно-основного равновесия представляет гидролиз ацетата, а обратная — реакцию нейтрализации уксусной кислоты сильным основанием.

Протолитические кислотно-основные равновесия III типа могут иметь место не только в воде, но и в других растворителях, например, в жидком аммиаке: СН3СООН + NН3 СН3СОО- + NH4+ в безводном HF: С2Н5ОН + HF С2Н5ОН2+ + F-
Слайд 77

Протолитические кислотно-основные равновесия III типа могут иметь место не только в воде, но и в других растворителях, например, в жидком аммиаке: СН3СООН + NН3 СН3СОО- + NH4+ в безводном HF: С2Н5ОН + HF С2Н5ОН2+ + F-

Теория Бренстеда, как и теория Аррениуса, не применима к веществам, проявлявшим функцию кислоты, но не содержащих водорода, например, галогенидам бора, алюминия, кремния, олова. Поэтому более общей является электронная теория кислот и оснований Льюиса.
Слайд 78

Теория Бренстеда, как и теория Аррениуса, не применима к веществам, проявлявшим функцию кислоты, но не содержащих водорода, например, галогенидам бора, алюминия, кремния, олова. Поэтому более общей является электронная теория кислот и оснований Льюиса.

Диссоциация воды. рН. Вода как слабый электролит в незначительной степени диссоциирует на ионы Н+ и ОН-, которые находятся в равновесии с недиссоциированными молекулами Н2О -Н+ + ОН-. Опытом установлено, что в 1 л воды при комнатной температуре (22°С) диссоциации подвергаются лишь 10-7 моль и при эт
Слайд 79

Диссоциация воды. рН

Вода как слабый электролит в незначительной степени диссоциирует на ионы Н+ и ОН-, которые находятся в равновесии с недиссоциированными молекулами Н2О -Н+ + ОН-. Опытом установлено, что в 1 л воды при комнатной температуре (22°С) диссоциации подвергаются лишь 10-7 моль и при этом образуется 10-7 моль/л ионов Н+ и10-7 моль/л ионов ОН-.

Произведение концентраций ионов водорода и гидроксид-ионов в воде называется ионным произведением воды (обозначается Кв). При определенной температуре Кв — величина постоянная. Численное значение его при температуре 22°С равно 10-14: Кв = [Н+][ОН-] = 10-7 ∙ 10-7 = 10-14
Слайд 80

Произведение концентраций ионов водорода и гидроксид-ионов в воде называется ионным произведением воды (обозначается Кв). При определенной температуре Кв — величина постоянная. Численное значение его при температуре 22°С равно 10-14: Кв = [Н+][ОН-] = 10-7 ∙ 10-7 = 10-14

Из постоянства произведения [Н+]и [ОН-] следует, что при увеличении концентрации одного из ионов воды соответственно уменьшается концентрация другого иона. Это позволяет вычислять концентрацию Н+-ионов, если известна концентрация гидроксид-ионов ОН-, и наоборот. Если в водном растворе [Н+]= 10-3 мол
Слайд 81

Из постоянства произведения [Н+]и [ОН-] следует, что при увеличении концентрации одного из ионов воды соответственно уменьшается концентрация другого иона. Это позволяет вычислять концентрацию Н+-ионов, если известна концентрация гидроксид-ионов ОН-, и наоборот. Если в водном растворе [Н+]= 10-3 моль/л, то [ОН-] определяется так:

Концентрацию водородных ионов принято выражать через водородный показатель и обозначать символом рН . Водородным показателем рН называется отрицательный десятичный логарифм концентрации водородных ионов: рН = -lg[H+] где [Н+] концентрация ионов водорода, моль/л.
Слайд 82

Концентрацию водородных ионов принято выражать через водородный показатель и обозначать символом рН . Водородным показателем рН называется отрицательный десятичный логарифм концентрации водородных ионов: рН = -lg[H+] где [Н+] концентрация ионов водорода, моль/л.

С помощью рН реакция растворов характеризуется так: нейтральная рН =7, кислая рН  7. Чем меньше рН, тем больше концентрация ионов Н+ т. е. выше кислотность среды; и наоборот, чем больше рН, тем меньше концентрация ионов Н+, т. е. выше щелочность среды.
Слайд 83

С помощью рН реакция растворов характеризуется так: нейтральная рН =7, кислая рН 7. Чем меньше рН, тем больше концентрация ионов Н+ т. е. выше кислотность среды; и наоборот, чем больше рН, тем меньше концентрация ионов Н+, т. е. выше щелочность среды.

Существуют различные методы измерения рН. Качественно реакцию среды и рН водных растворов определяют с помощью индикаторов. Индикаторами называются вещества, которые обратимо изменяют свой цвет в зависимости от среды раствора, т. е. рН раствора. На практике применяют индикаторы лакмус, метиловый ора
Слайд 84

Существуют различные методы измерения рН. Качественно реакцию среды и рН водных растворов определяют с помощью индикаторов. Индикаторами называются вещества, которые обратимо изменяют свой цвет в зависимости от среды раствора, т. е. рН раствора. На практике применяют индикаторы лакмус, метиловый оранжевый (метилоранж) и фенолфталеин.

Реакции обмена в водных растворах электролитов. Многие химические реакции протекают в водных растворах. Если в этих реакциях участвуют электролиты, то следует учитывать, что они находятся в водном растворе в диссоциированном состоянии, т. е. или только в виде ионов (сильные электролиты) и частично в
Слайд 85

Реакции обмена в водных растворах электролитов

Многие химические реакции протекают в водных растворах. Если в этих реакциях участвуют электролиты, то следует учитывать, что они находятся в водном растворе в диссоциированном состоянии, т. е. или только в виде ионов (сильные электролиты) и частично в виде молекул (слабые электролиты).

Реакции между водными растворами электролитов — это реакции, в которых участвуют ионы. Поэтому такие реакции называются ионными реакциями. Эти реакции возможны только в том случае, если между ионами происходит химическое взаимодействие.
Слайд 86

Реакции между водными растворами электролитов — это реакции, в которых участвуют ионы. Поэтому такие реакции называются ионными реакциями. Эти реакции возможны только в том случае, если между ионами происходит химическое взаимодействие.

Ионы одного электролита связываются с ионами другого электролита с образованием: а)	нерастворимого вещества; б)	газообразного вещества; в)	малодиссоциирующего вещества (слабый электролит). г)	комплексного соединения.
Слайд 87

Ионы одного электролита связываются с ионами другого электролита с образованием: а) нерастворимого вещества; б) газообразного вещества; в) малодиссоциирующего вещества (слабый электролит). г) комплексного соединения.

Ионные реакции и уравнения. При составлении ионных уравнений реакций следует руководствоваться тем, что вещества малодиссоциированные, малорастворимые (выпадающие в осадок) и газообразные изображаются в молекулярной форме.
Слайд 88

Ионные реакции и уравнения

При составлении ионных уравнений реакций следует руководствоваться тем, что вещества малодиссоциированные, малорастворимые (выпадающие в осадок) и газообразные изображаются в молекулярной форме.

Сильные растворимые электролиты, как полностью диссоциированные, пишутся в виде ионов. Например: AgNO3 + HCl = AgCl↓ + HNO3 Ag+ + NО3- + H+ + Cl- = AgCl↓ + H+ + NO3- Ag++ Cl- = AgCl↓ Na2CO3+H2SO4=Na2SO4+CO2↑+H2O 2Na++CO32-+2H++SO42-=2Na++SO42-+CO2↑+H2O CO32-+2H+= CO2↑+H2O
Слайд 89

Сильные растворимые электролиты, как полностью диссоциированные, пишутся в виде ионов. Например: AgNO3 + HCl = AgCl↓ + HNO3 Ag+ + NО3- + H+ + Cl- = AgCl↓ + H+ + NO3- Ag++ Cl- = AgCl↓ Na2CO3+H2SO4=Na2SO4+CO2↑+H2O 2Na++CO32-+2H++SO42-=2Na++SO42-+CO2↑+H2O CO32-+2H+= CO2↑+H2O

Термины и определения. Гидратация- взаимодействие веществ с водой, характеризующееся тем, что молекула воды присоединяется к исходной частице полностью. Гидраты- соединения, образовавшиеся в процессе присоединения воды к молекулам, атомам или ионам. Диполь-дипольное взаимодействие-взаимодействие меж
Слайд 90

Термины и определения

Гидратация- взаимодействие веществ с водой, характеризующееся тем, что молекула воды присоединяется к исходной частице полностью. Гидраты- соединения, образовавшиеся в процессе присоединения воды к молекулам, атомам или ионам. Диполь-дипольное взаимодействие-взаимодействие между противоположно заряженными концами двух полярных связей или двух полярных молекул.

Диссоциация электролитическая(ионизация)-распад электролитов растворах или расплавах на составляющие их ионы. Ионизация-процесс образования ионов из нейтральных частиц атомов, радикалов, молекул. Ионы- электрически заряженные атомы ( простые атомы) или группы атомов(комплексные или многоатомные ионы
Слайд 91

Диссоциация электролитическая(ионизация)-распад электролитов растворах или расплавах на составляющие их ионы. Ионизация-процесс образования ионов из нейтральных частиц атомов, радикалов, молекул. Ионы- электрически заряженные атомы ( простые атомы) или группы атомов(комплексные или многоатомные ионы).

Сольватация - взаимодействие частиц (молекул и ионов). Электроды- твердые фазы, характеризующиеся электрической проводимостью и находящиеся в контакте с электролитом. Электролит- вещество, водный раствор или расплав которого проводит электрический ток.
Слайд 92

Сольватация - взаимодействие частиц (молекул и ионов). Электроды- твердые фазы, характеризующиеся электрической проводимостью и находящиеся в контакте с электролитом. Электролит- вещество, водный раствор или расплав которого проводит электрический ток.

Литература. 1. Л.М. Пустовалова, И.Е. Никанорова. Общая химия – Ростов-на-Дону: Феникс, 2005г. 2. Ершов, В. А. Общая химия. Биофизическая химия: учеб. для вузов-3-е изд.-М.: высш. шк., 2002. 3. Бабков А.В. Химия: учебник для студ. сред.мед. учеб. заведений.-М.: издательский центр «Академия», 2003г.
Слайд 93

Литература

1. Л.М. Пустовалова, И.Е. Никанорова. Общая химия – Ростов-на-Дону: Феникс, 2005г. 2. Ершов, В. А. Общая химия. Биофизическая химия: учеб. для вузов-3-е изд.-М.: высш. шк., 2002. 3. Бабков А.В. Химия: учебник для студ. сред.мед. учеб. заведений.-М.: издательский центр «Академия», 2003г.

4. Барковский Е.В. Аналитическая химия: учеб. пособие- Мн.: высш. шк., 2004г. 5. Глинка Н.Л. Общая химия. Учебное пособие.-Интеграл-пресс.-2008г. 6. Хаускофт К., Констебл Э. Современный курс общей химии. В 2-х т. пер. с англ. М: Мир, 2002г. 7. Слесарев В.И. Химия: Основы химии живого: Учебник для ву
Слайд 94

4. Барковский Е.В. Аналитическая химия: учеб. пособие- Мн.: высш. шк., 2004г. 5. Глинка Н.Л. Общая химия. Учебное пособие.-Интеграл-пресс.-2008г. 6. Хаускофт К., Констебл Э. Современный курс общей химии. В 2-х т. пер. с англ. М: Мир, 2002г. 7. Слесарев В.И. Химия: Основы химии живого: Учебник для вузов. – 3-е изд., испр. – СПб: Химиздат, 2005.

Список похожих презентаций

Теория электролитической диссоциации обобщающий урок

Теория электролитической диссоциации обобщающий урок

Терминология Фарадея. Майкл Фарадей (1791 -1867). Ион Катион Анион Электролит Катод Анод Электролиз Диэлектрическая проницаемость. 1833-1834 гг. Предыстория ...
Теория электролитической диссоциации

Теория электролитической диссоциации

План урока. Теория электролитической диссоциации. I- е положение ТЭД. Задания к I-му положению ТЭД. II-е положение ТЭД. Задания к II-му положению ...
Процесс электролитической диссоциации

Процесс электролитической диссоциации

Электролитическая диссоциация. Исследование электропроводности жидкостей. Cu2+ SO42- + - H2O - +. Схема диссоциации сульфата меди. CuSO4=Cu2+ + SO42-. ...
Химические свойства кислот с позиции теории электролитической диссоциации

Химические свойства кислот с позиции теории электролитической диссоциации

Кислоты. Тема урока: «Химические свойства кислот с позиции теории электролитической диссоциации». «От кислых яблок сразу скисну». В. Шекспир. Кислота, ...
Основания, их классификация и свойства в свете теории электролитической диссоциации

Основания, их классификация и свойства в свете теории электролитической диссоциации

Основания, их классификация и свойства в свете теории электролитической диссоциации. 1) сформировать понятие об основаниях как электролитах; 2) рассмотреть ...
Теория строения органических соединений А. М. Бутлерова

Теория строения органических соединений А. М. Бутлерова

Теория радикалов (30 гг. XIX в Й.Берцелиус, Ю.Либих, Ж.Дюма). В состав органических веществ входят радикалы;. Радикалы всегда постоянны, не подвергаются ...
Теория атома водорода по Бору

Теория атома водорода по Бору

БОР Нильс Хендрик Давид (7.Х 1885 — 18.XI 1962) — выдающийся датский физик теоретик, один из создателей современной физи­ки, член Датского королевского ...
Теория А. М. Бутлерова

Теория А. М. Бутлерова

Бутлеров Александр Михайлович (1828-1886). Русский химик, академик Петербургской АН (с 1874 г.). Окончил Казанский университет (1849 г.). Работал ...
Теория химического строения органических веществ

Теория химического строения органических веществ

"Просто знать - мало, знания нужно уметь использовать" Гёте. Кластер ОО. Органическая химия. Органические вещества. Теория химического строения. Валентные ...
Теория химического строения органических веществ А.М. Бутлерова

Теория химического строения органических веществ А.М. Бутлерова

Важнейшем открытием в органической химии в середине 19 века явилось то, что углерод, как правило, четырёхвалентен (1857 г.), были известны СН4, С2Н2, ...
Теория строения химических соединений А.М.Бутлерова

Теория строения химических соединений А.М.Бутлерова

Бутлеров Александр Михайлович (1828-1886). Русский химик, академик Петербургской АН (с 1874 г.). Окончил Казанский университет (1849 г.). Работал ...
Теория тарелок. Хроматографические идентификация. Количественный анализ

Теория тарелок. Хроматографические идентификация. Количественный анализ

Теория тарелок (1). Позволяет ответить на следующие вопросы: какую форму должен иметь хроматографический пик, насколько он будет размыт при использовании ...
Теория строения строения органических соединений

Теория строения строения органических соединений

Первые теории строения органических соединений. Органическая химия в начале XIX века: Ученые определяли количественный и качественный состав вещества. ...
Теория строения химических соединений А.М. Бутлерова

Теория строения химических соединений А.М. Бутлерова

Оглавление Биография А.М. Бутлерова; Основные положения теории строения химических соединений; Первое положение; Второе положение; Третье положение; ...
Основы строения органических соединений. Теория строения органических соединений

Основы строения органических соединений. Теория строения органических соединений

К первой половине XIX века в органической химии был накоплен громадный фактический материал, дальнейшее изучение которого тормозилось отсутствием ...
Теория строения органических соединений А.М. Бутлерова

Теория строения органических соединений А.М. Бутлерова

Теория радикалов (30 гг. XIX в Й.Берцелиус, Ю.Либих, Ж.Дюма). В состав органических веществ входят радикалы;. Радикалы всегда постоянны, не подвергаются ...
Теория строения органических соединений

Теория строения органических соединений

Например: Сбраживая виноградный сок, получали вино, а при его перегонке - спирт; Нагревая жир с содой, получали мыло; Из цветов извлекали эфирные ...
Теория строения Бутлерова

Теория строения Бутлерова

Цели и задачи :. понимание специфики естественнонаучного и гуманитарного компонентов культуры, ее связей с особенностями мышления; формирование представлений ...
Теория статистики

Теория статистики

«статистика» - от латинского status — состояние дел. НЕМ.УЧЕНЫЙ ГОДФРИД АХЕНВАЛЬ, 1746г. статистический учет. проводились переписи населения в Древнем ...
Теория органической химии

Теория органической химии

Вот уже более 150 лет, слова Ф. Вёлера кажутся нам всё более правдивыми. Действительно, даже с нашими высокоразвитыми научными достижениями и технологиями ...

Конспекты

Теория электролитической диссоциации

Теория электролитической диссоциации

Тема:. Обобщение знаний по теме «Теория электролитической диссоциации». Цель:. Применить знания, полученные при изучении темы ТЭД для объяснения ...
Теория электролитической диссоциации

Теория электролитической диссоциации

Урок по химии в 11 классе по теме «Теория электролитической диссоциации». Цель:. Систематизация знаний учащихся по теме «Теория электролитической ...
Основные положения теории электролитической диссоциации

Основные положения теории электролитической диссоциации

Дисциплина: химия. План-конспект методической разработки урока. . с пояснениями по использованию материала. . в практической деятельности ...
Основания, их классификация и химические свойства в свете теории электролитической диссоциации

Основания, их классификация и химические свойства в свете теории электролитической диссоциации

ТЕМА УРОКА :. Основания, их классификация и химические свойства в. . свете теории электролитической диссоциации. . . II. слайд:. ЦЕЛЬ УРОКА:. ...
Обобщение свойств основных классов неорганических соединений в свете теории электролитической диссоциации

Обобщение свойств основных классов неорганических соединений в свете теории электролитической диссоциации

Конспект урока химии. . 9 класс. Тема : «Обобщение свойств основных классов неорганических соединений в свете теории электролитической диссоциации». ...
Кислоты. Химические свойства кислот в свете теории электролитической диссоциации

Кислоты. Химические свойства кислот в свете теории электролитической диссоциации

Урок химии в 8-м классе по теме: "Кислоты. Химические свойства кислот в свете теории электролитической диссоциации.". . Цели урока:. Образовательная. ...
Соли в свете теории электролитической диссоциации

Соли в свете теории электролитической диссоциации

Муниципальное бюджетное общеобразовательное учреждение. «Средняя школа №9». Ульяновской области города Димитровграда. Конспект урока ...
Химические свойства кислот в свете электролитической диссоциации

Химические свойства кислот в свете электролитической диссоциации

. Открытый урок. по теме:. «Химические свойства кислот в свете электролитической диссоциации». Урок-исследование. /химия. . . 8 класс. ...
Соли в свете теории электролитической диссоциации, их свойства

Соли в свете теории электролитической диссоциации, их свойства

Предмет – химия. Класс – 8. Тема урока: «Соли в свете теории электролитической диссоциации, их свойства». Тип урока: урок изучения нового ...
Соли, их классификация и химические свойства в свете теории электролитической диссоциации

Соли, их классификация и химические свойства в свете теории электролитической диссоциации

Муниципальное общеобразовательное учреждение. . средняя общеобразовательная школа №2. г. Алексеевки Белгородской области. Конспект ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 мая 2015
Категория:Химия
Автор презентации:Неизвестен
Содержит:94 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации