- Основы структуры механизмов, структурный и кинематический анализ

Презентация "Основы структуры механизмов, структурный и кинематический анализ" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56
Слайд 57
Слайд 58
Слайд 59
Слайд 60

Презентацию на тему "Основы структуры механизмов, структурный и кинематический анализ" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 60 слайд(ов).

Слайды презентации

Автор: Потехин Борис Борисович, к.т.н., доцент Прикладная механика. Федеральное агентство по образования РФ. Институт ИИБС Кафедра СТЭА Владивосток 2010. Владивостокский государственный университет экономики и сервиса
Слайд 1

Автор: Потехин Борис Борисович, к.т.н., доцент Прикладная механика

Федеральное агентство по образования РФ

Институт ИИБС Кафедра СТЭА Владивосток 2010

Владивостокский государственный университет экономики и сервиса

ПЛАН ЛЕКЦИИ ТЕМА 1. Основы структуры механизмов, структурный и кинематический анализ Введение. Машина и механизм. Структура механизмов. Звено. Кинематическая пара, классификация кинематических пар, кинематическая цепь. Структура и классификация механизмов. Степени подвижности механизмов. Структура п
Слайд 2

ПЛАН ЛЕКЦИИ ТЕМА 1

Основы структуры механизмов, структурный и кинематический анализ Введение. Машина и механизм. Структура механизмов. Звено. Кинематическая пара, классификация кинематических пар, кинематическая цепь. Структура и классификация механизмов. Степени подвижности механизмов. Структура плоских и пространственных механизмов. Структурный анализ механизмов. Кинематическая схема механизма. Входные и выходные звенья. Передаточные механизмы. Передаточное отношение механизмов. Линейное и угловое передаточные отношения. Классификация механизмов. Группы Ассура. Классификация механизмов по Ассуру. Задачи и методы кинематического анализа. Виды плоского движения твердого тела. Мертвые положения механизма. Условие существования кривошипа. Планы скоростей и ускорений. Абсолютные и относительные угловые скорости звеньев.

Введение
Слайд 3

Введение

Цель изучения дисциплины. Сформировать знания по структурному , кинематическому, динамическому и силовому анализу машин и механизмов, принципам выполнения расчетов основных видов механических передач, проектированию приводов транспортных и технологических машин, их узлов и элементов передач.
Слайд 4

Цель изучения дисциплины

Сформировать знания по структурному , кинематическому, динамическому и силовому анализу машин и механизмов, принципам выполнения расчетов основных видов механических передач, проектированию приводов транспортных и технологических машин, их узлов и элементов передач.

Дать студентам представление об особенностях проектирования изделий, принципах инженерных расчетов, механических свойствах конструкционных материалов, основных методах расчетов сварных швов при различных схемах нагружения, определении допускаемых напряжений в сварных швах, выборе стандартных посадок
Слайд 5

Дать студентам представление об особенностях проектирования изделий, принципах инженерных расчетов, механических свойствах конструкционных материалов, основных методах расчетов сварных швов при различных схемах нагружения, определении допускаемых напряжений в сварных швах, выборе стандартных посадок с натягом из условия неподвижности соединения под действием нагрузки без дополнительных креплений для обеспечения передачи заданной нагрузки, методиках расчета одиночных и групповых болтовых и шпоночных соединений по эквивалентным напряжениям,

Краткая характеристика содержания дисциплины. Дисциплине «Прикладная механика» составлена в соответствии с требованиями ГОС РФ ВПО. Содержанием дисциплины является механика как основа инженерной подготовки, ее методов и целей. Включает основы ТММ, деталей машин, технологических процессов и основ кон
Слайд 6

Краткая характеристика содержания дисциплины

Дисциплине «Прикладная механика» составлена в соответствии с требованиями ГОС РФ ВПО. Содержанием дисциплины является механика как основа инженерной подготовки, ее методов и целей. Включает основы ТММ, деталей машин, технологических процессов и основ конструирования. Предназначена студентам II курса специальности 19070265 «Организация и безопасность движения» для очной и заочной форм обучения.

Требования к приобретаемым знаниям и умениям. Знания и умения, получаемые студентами в результате изучения дисциплины, необходимы для подготовки к изучению следующих дисциплин: «Рабочие процессы, конструкция и основы расчета автомобильных двигателей», «Технология машиностроения».
Слайд 7

Требования к приобретаемым знаниям и умениям

Знания и умения, получаемые студентами в результате изучения дисциплины, необходимы для подготовки к изучению следующих дисциплин: «Рабочие процессы, конструкция и основы расчета автомобильных двигателей», «Технология машиностроения».

Студент должен уметь: применять на практике методы полной и неполной взаимозаменяемости деталей, узлов и агрегатов; производить расчеты допускаемых напряжений по основным теориям прочности; использовать на практике основные принципы прочностных расчетов; работать с различными типами и классами прибо
Слайд 8

Студент должен уметь: применять на практике методы полной и неполной взаимозаменяемости деталей, узлов и агрегатов; производить расчеты допускаемых напряжений по основным теориям прочности; использовать на практике основные принципы прочностных расчетов; работать с различными типами и классами приборов и средств измерения.

ИСТОЧНИКИ. Основная литература Иосилевич Г.Б. Прикладная механика. – М.: Машиностроение, 2000. Ковалев Н.А. Прикладная механика. – М.: Высшая школа, 2000. Артоболевский И.И. Теория механизмов и машин. – М., 2004. Гузенков П.Г. Детали машин. – М.: Высшая школа, 2006. Дополнительная литература Анурьев
Слайд 9

ИСТОЧНИКИ

Основная литература Иосилевич Г.Б. Прикладная механика. – М.: Машиностроение, 2000. Ковалев Н.А. Прикладная механика. – М.: Высшая школа, 2000. Артоболевский И.И. Теория механизмов и машин. – М., 2004. Гузенков П.Г. Детали машин. – М.: Высшая школа, 2006. Дополнительная литература Анурьев В.И. Справочник конструктора-машиностроителя. – М.: Ма­шиностроение, 2002. Кожевников С.Н. Теория механизмов и машин. – М., 2003. Решетов Д.Н. Детали машин. – М.: Машиностроение, 2003. Чубенко Е.Ф. Лабораторный практикум по деталям машин: учебное пособие. – Владивосток: Изд-во ВГУЭС, 2005

Основы структуры механизмов, cтруктурный и кинематический анализ
Слайд 10

Основы структуры механизмов, cтруктурный и кинематический анализ

Машина и механизм. МАШИНА – (греч. "махина" – огромная, грозная) система деталей, совершающая механическое движение для преобразования энергии, материалов или информации с целью облегчения труда. Машина характерна наличием источника энергии и требует присутствия оператора для своего управл
Слайд 11

Машина и механизм

МАШИНА – (греч. "махина" – огромная, грозная) система деталей, совершающая механическое движение для преобразования энергии, материалов или информации с целью облегчения труда. Машина характерна наличием источника энергии и требует присутствия оператора для своего управления.

Всякая машина состоит из двигательного, передаточного и исполнительного механизмов. МЕХАНИЗМ – система деталей, предназначенная для передачи и преобразования движения.
Слайд 12

Всякая машина состоит из двигательного, передаточного и исполнительного механизмов. МЕХАНИЗМ – система деталей, предназначенная для передачи и преобразования движения.

Структура механизм. Механизм является системой твердых тел. Поэтому механизмы имеют как весьма простое, так и достаточно сложное и разнообразное строение (структуру). Строением механизма определяются такие его важнейшие характеристики, как виды осуществляемых движений, способы их преобразования, чис
Слайд 13

Структура механизм

Механизм является системой твердых тел. Поэтому механизмы имеют как весьма простое, так и достаточно сложное и разнообразное строение (структуру). Строением механизма определяются такие его важнейшие характеристики, как виды осуществляемых движений, способы их преобразования, число степеней свободы. Формирование механизма, т. е. соединение отдельных его частей в единую систему, сопровождается наложением связей.

Правильное их распределение в строении механизма в сильной степени предопределяет его надежную эксплуатацию. Поэтому при проектировании нужно из множества разнообразных механизмов выбрать самый подходящий и правильно подобрать его основные структурные элементы. А для этого прежде всего надо знать ос
Слайд 14

Правильное их распределение в строении механизма в сильной степени предопределяет его надежную эксплуатацию. Поэтому при проектировании нужно из множества разнообразных механизмов выбрать самый подходящий и правильно подобрать его основные структурные элементы. А для этого прежде всего надо знать основные виды современных механизмов, их структурные характеристики, закономерности их строения.

Звено механизма. Твердые тела, из которых образуется механизм, называют звеньями. При этом имеются в виду как абсолютно твердые, так и деформируемые и гибкие тела. Звено — либо одна деталь, либо совокупность нескольких деталей, соединенных в одну кинематически неизменяемую систему. Звенья различают
Слайд 15

Звено механизма

Твердые тела, из которых образуется механизм, называют звеньями. При этом имеются в виду как абсолютно твердые, так и деформируемые и гибкие тела. Звено — либо одна деталь, либо совокупность нескольких деталей, соединенных в одну кинематически неизменяемую систему. Звенья различают по конструктивным признакам (коленчатый вал, шатун, поршень, зубчатое колесо и т. д.) и по характеру их движения.

Например, звено, вращающееся на полный оборот вокруг неподвижной оси, называют кривошипом, при неполном обороте — коромыслом; звено, совершающее поступательное прямолинейное движение, — ползуном и т. д. Неподвижное звено механизма для краткости называют стойкой; понятие неподвижности стойки для меха
Слайд 16

Например, звено, вращающееся на полный оборот вокруг неподвижной оси, называют кривошипом, при неполном обороте — коромыслом; звено, совершающее поступательное прямолинейное движение, — ползуном и т. д. Неподвижное звено механизма для краткости называют стойкой; понятие неподвижности стойки для механизмов транспортных машин, в частности летательных аппаратов, — условное, поскольку в этом случае сама стойка движется.

Кинематическая пара. Кинематической парой (сокращенно — парой) называют подвижное соединение двух соприкасающихся звеньев Совокупность поверхностей, линий и точек звена, входящих в соприкосновение (контакт) с другим звеном пары, называют элементом пары. Для того чтобы элементы пары находились в пост
Слайд 17

Кинематическая пара

Кинематической парой (сокращенно — парой) называют подвижное соединение двух соприкасающихся звеньев Совокупность поверхностей, линий и точек звена, входящих в соприкосновение (контакт) с другим звеном пары, называют элементом пары. Для того чтобы элементы пары находились в постоянном соприкосновении, пара должна быть замкнута геометрическим (за счет конструктивной формы звеньев) или силовым (силой тяжести, пружиной, силой давления жидкости ,газа и т.п. ) способом.

Классификация кинематических пар. Для твердого тела, свободно движущегося в пространстве, число степеней свободы равно шести: три возможных перемещения вдоль неподвижных ко­ординатных осей и три — вокруг этих осей. Для звеньев, входящих в кинематическую пару, число степеней свободы в их относительно
Слайд 18

Классификация кинематических пар

Для твердого тела, свободно движущегося в пространстве, число степеней свободы равно шести: три возможных перемещения вдоль неподвижных ко­ординатных осей и три — вокруг этих осей. Для звеньев, входящих в кинематическую пару, число степеней свободы в их относительном движении всегда меньше шести, так как условия постоянного соприкасания звеньев кинематической пары уменьшают число возможных перемещений. По предложению В. В. Добровольского все кинемати­ческие пары подразделены по числу степеней свободы на одно-, двух-, трех-, четырех - и пятиподвижные.

Наиболее используемые кинематические пары показаны на рисунках а) – е)
Слайд 19

Наиболее используемые кинематические пары показаны на рисунках а) – е)

Основы структуры механизмов, структурный и кинематический анализ Слайд: 20
Слайд 20
Низшие и высшие КП. Совокупность поверхностей линий отдельных точек звена, по которым оно может соприкасаться с другим звеном, образуя кинематическую пару, называется элементом кинематической пары. Кинематическую пару можно рассматривать как совокупность двух элементов, каждый из которых принадлежит
Слайд 21

Низшие и высшие КП

Совокупность поверхностей линий отдельных точек звена, по которым оно может соприкасаться с другим звеном, образуя кинематическую пару, называется элементом кинематической пары. Кинематическую пару можно рассматривать как совокупность двух элементов, каждый из которых принадлежит одному звену. К низшим парам принадлежат: вращательная поступательная, винтовая, цилиндрическая, сферическая и плоскостная.

Низшей КП называется кинематическая пара, в которой требуемое относительное движение звеньев между собой осуществляется по поверхности. Высшей КП называется кинематическая пара, в которой требуемое относительное движение звеньев может быть получено только сопрекасновенем ее элементов по линиям и в т
Слайд 22

Низшей КП называется кинематическая пара, в которой требуемое относительное движение звеньев между собой осуществляется по поверхности. Высшей КП называется кинематическая пара, в которой требуемое относительное движение звеньев может быть получено только сопрекасновенем ее элементов по линиям и в точках.

КИНЕМАТИЧЕСКИЕ ЦЕПИ Систему звеньев, образующих между собой кинематические пары, называют кинематическойцепью. Различают замкнутые и незамкнутые кинематические цепи. В замкнутой цепи каждое звено входит не менее чем в две кинематические пары, в незамкнутой цепи есть звенья, входящие только в одну ки
Слайд 23

КИНЕМАТИЧЕСКИЕ ЦЕПИ Систему звеньев, образующих между собой кинематические пары, называют кинематическойцепью. Различают замкнутые и незамкнутые кинематические цепи. В замкнутой цепи каждое звено входит не менее чем в две кинематические пары, в незамкнутой цепи есть звенья, входящие только в одну кинематическую пар, рис. а), б) ,в).

Основы структуры механизмов, структурный и кинематический анализ Слайд: 24
Слайд 24
Применяя термин «кинематическая цепь», можно дать следующее определение механизма: механизм — кинематическая цепь, в состав которой входит неподвижное звено (стойка) и число степеней свободы которой равно числу обобщенных координат, характеризующих положение цепи относительно стойки. Например, на сх
Слайд 25

Применяя термин «кинематическая цепь», можно дать следующее определение механизма: механизм — кинематическая цепь, в состав которой входит неподвижное звено (стойка) и число степеней свободы которой равно числу обобщенных координат, характеризующих положение цепи относительно стойки. Например, на схеме кривошипно-ползунного механизма ДВС с одной степенью свободы (W=l) показана одна обобщенная координата механизма в виде угловой координаты звена 1 ω 1 — угловая скорость звена. См. рис. а), б), в).

Основы структуры механизмов, структурный и кинематический анализ Слайд: 26
Слайд 26
Структура и классификация механизмов
Слайд 27

Структура и классификация механизмов

Структурные формулы механизмов. Существуют общие закономерности в структуре (строении) самых различных механизмов, связывающие число степеней свободы W механизма с числом звеньев и числом и видом его кинематических пар. Эти закономерности носят название структурных формул механизмов. Для пространств
Слайд 28

Структурные формулы механизмов

Существуют общие закономерности в структуре (строении) самых различных механизмов, связывающие число степеней свободы W механизма с числом звеньев и числом и видом его кинематических пар. Эти закономерности носят название структурных формул механизмов. Для пространственных механизмов в настоящее время наиболее распространена формула Малышева.

Структурная формула пространственных механизмов. Для кинематической цепи, у которой одно из звеньев неподвижно, Число связей, накладываемых на звенья при их соединении в кинематические пары, зависит от класса пар. Обозначим число кинематических пар I, II, III, IV, и V классов соответственно через Р1
Слайд 29

Структурная формула пространственных механизмов

Для кинематической цепи, у которой одно из звеньев неподвижно, Число связей, накладываемых на звенья при их соединении в кинематические пары, зависит от класса пар. Обозначим число кинематических пар I, II, III, IV, и V классов соответственно через Р1, Р2, Р3, Р4, Р5. Тогда выражение для числа степеней свободы W кинематической цепи, составленной из звеньев. W= 6-5P5-4P4-3P3-2P2-P1.

W=3n-2P5-P4 Формула называется структурной формулой плоских шарнирных механизмов, получена акад. П.П. Чебышевым в 1869 г. Она связывает степень подвижности механизма с числом его звеньев и пар кинематической цепи.
Слайд 30

W=3n-2P5-P4 Формула называется структурной формулой плоских шарнирных механизмов, получена акад. П.П. Чебышевым в 1869 г. Она связывает степень подвижности механизма с числом его звеньев и пар кинематической цепи.

Структурный анализ механизмов. Структурным анализом механизма называется проектирование структурной схемы, указывающий стойку, вид кинематических пар и их взаимное расположение.
Слайд 31

Структурный анализ механизмов

Структурным анализом механизма называется проектирование структурной схемы, указывающий стойку, вид кинематических пар и их взаимное расположение.

Кинематическая схема. Кинематическая схема – графическое изображение соединения звеньев в кинематические пары с указанием размеров звеньев.
Слайд 32

Кинематическая схема

Кинематическая схема – графическое изображение соединения звеньев в кинематические пары с указанием размеров звеньев.

ВХОД	НЫЕ И ВЫХОДНЫЕ ЗВЕНЬЯ Различают входные и выходные звенья механизма. Выходным называют звено, совершающее движение, для которого предназначен механизм. Входным называют звено, которому сообщается движение, преобразуемое механизмом в требуемое движение выходного звена. Число входных звеньев обыч
Слайд 33

ВХОД НЫЕ И ВЫХОДНЫЕ ЗВЕНЬЯ Различают входные и выходные звенья механизма. Выходным называют звено, совершающее движение, для которого предназначен механизм. Входным называют звено, которому сообщается движение, преобразуемое механизмом в требуемое движение выходного звена. Число входных звеньев обычно равно числу степеней свободы механизма, т. е. числу его обобщенных координат, но возможно и несовпадение их.

Классификация механизмов. Плоские механизмы с низшими парами. Пространственные механизмы низшими парами. Кулачковые механизмы. Зубчатые механизмы.
Слайд 34

Классификация механизмов

Плоские механизмы с низшими парами. Пространственные механизмы низшими парами. Кулачковые механизмы. Зубчатые механизмы.

Передаточные механизмы. Механическими передачами или просто передачами называются механизмы, которые преобразуют параметры движения от двигателя к исполнительным органам машины. Механическая энергия передаётся, как правило, с преобразованием скоростей и вращающих моментов, а иногда с преобразованием
Слайд 35

Передаточные механизмы

Механическими передачами или просто передачами называются механизмы, которые преобразуют параметры движения от двигателя к исполнительным органам машины. Механическая энергия передаётся, как правило, с преобразованием скоростей и вращающих моментов, а иногда с преобразованием вида и закона движения.

Передаточное отношение — одна из важных характеристик механической передачи вращательного движения, находится как отношение угловой скорости ведущего элемента (ω1) механической передачи к угловой скорости ведомого элемента(ω2) или отношение частоты вращения ведущего элемента (n1) механической переда
Слайд 36

Передаточное отношение — одна из важных характеристик механической передачи вращательного движения, находится как отношение угловой скорости ведущего элемента (ω1) механической передачи к угловой скорости ведомого элемента(ω2) или отношение частоты вращения ведущего элемента (n1) механической передачи к частоте вращения ведомого элемента (n2).

Основная формула передаточного отношения
Слайд 37

Основная формула передаточного отношения

Классификация Передачи зацепления: Цилиндрические зубчатые передачи - отличаются надёжностью и имеют высокий ресурс эксплуатации. Обычно применяются при особо сложных режимах работы, для передачи и преоброзовывания больших мощностей. Цилиндрические передачи бывают прямозубыми, косозубыми и шевронным
Слайд 38

Классификация Передачи зацепления: Цилиндрические зубчатые передачи - отличаются надёжностью и имеют высокий ресурс эксплуатации. Обычно применяются при особо сложных режимах работы, для передачи и преоброзовывания больших мощностей. Цилиндрические передачи бывают прямозубыми, косозубыми и шевронными .

Группы Ассура. Разработанная Л. Б. Ассуром структурная классификация плоских рычажных механизмов облегчает исследование имеющихся и создание новых механизмов без избыточных связей в их плоской схеме (gn = 0). Основной принцип ее состоит в том, что механизм может быть получен путем присоединения к од
Слайд 39

Группы Ассура

Разработанная Л. Б. Ассуром структурная классификация плоских рычажных механизмов облегчает исследование имеющихся и создание новых механизмов без избыточных связей в их плоской схеме (gn = 0). Основной принцип ее состоит в том, что механизм может быть получен путем присоединения к одному или нескольким начальным звеньям и стойке кинематических цепей (структурных групп) нулевой подвижности относительно тех звеньев, к которым группа присоединяется.

Таким образом, структурная группа — кинематическая цепь, присоединение которой к механизму не изменяет числа его степеней свободы. Для краткости в дальнейшем введем условный термин — первичный механизм (по И. И. Артоболевскому— механизм I класса), представляющий собой простейший двухзвенный механизм
Слайд 40

Таким образом, структурная группа — кинематическая цепь, присоединение которой к механизму не изменяет числа его степеней свободы. Для краткости в дальнейшем введем условный термин — первичный механизм (по И. И. Артоболевскому— механизм I класса), представляющий собой простейший двухзвенный механизм, состоящий из подвижного звена и стойки; число первичных механизмов равно числу степеней свободы механизма. Для структурных групп Ассура, согласно определению и формуле Чебышева (при рв.г. = 0, n = nп.г. и qп = 0), справедливо равенство: Wп.г. = 3nп.г. — 2pн.г. = 0. (1)

где Wп.г. — число степеней свободы структурной (поводковой) группы относительно тех звеньев, к которым она присоединяется; nп.г. ,pн.г. — число звеньев и низших пар структурной группы Ассура. Поскольку nп.г. и pн.г. могут быть только целыми числами, из равенства (1) получим следующие их значения: nп
Слайд 41

где Wп.г. — число степеней свободы структурной (поводковой) группы относительно тех звеньев, к которым она присоединяется; nп.г. ,pн.г. — число звеньев и низших пар структурной группы Ассура. Поскольку nп.г. и pн.г. могут быть только целыми числами, из равенства (1) получим следующие их значения: nп.г. = 2, 4, 6, … ; pн.г. = 3, 6, 9, … .

Основы структуры механизмов, структурный и кинематический анализ Слайд: 42
Слайд 42
Задачи и методы кинематического анализа. Кинематический анализ – определение движения звеньев механизма по заданному движению начальных звеньев.
Слайд 43

Задачи и методы кинематического анализа

Кинематический анализ – определение движения звеньев механизма по заданному движению начальных звеньев.

Задачи кинематического анализа. Задачи кинематического анализа состоят в определении перемещений, скоростей и ускорений звеньях механизма. Цель изучить движение звеньев без учета сил, вызывающих это движение.
Слайд 44

Задачи кинематического анализа

Задачи кинематического анализа состоят в определении перемещений, скоростей и ускорений звеньях механизма. Цель изучить движение звеньев без учета сил, вызывающих это движение.

Методы кинематического анализа. Методы кинематического анализа механизмов основаны на использовании приемов аналитической геометрии, тензорно-матричных операций, комплексных переменных величин и др. Эти методы связаны с координатными системами и приводят к скалярным уравнениям относительно искомых в
Слайд 45

Методы кинематического анализа

Методы кинематического анализа механизмов основаны на использовании приемов аналитической геометрии, тензорно-матричных операций, комплексных переменных величин и др. Эти методы связаны с координатными системами и приводят к скалярным уравнениям относительно искомых величин тем более высоких степеней, чем сложнее исследуемые механические системы.

Виды плоского движения твердого тела. Как мы знаем, под плоским движением понимают такое движение твердого тела, когда все его точки движутся параллельно одной их главных координатных плоскостей или движутся в них. Различают три вида плоского движения: поступательное движение твердого тела, вращател
Слайд 46

Виды плоского движения твердого тела

Как мы знаем, под плоским движением понимают такое движение твердого тела, когда все его точки движутся параллельно одной их главных координатных плоскостей или движутся в них. Различают три вида плоского движения: поступательное движение твердого тела, вращательное движение вокруг неподвижной оси и плоско-параллельное движение твердого тела.

Кулисный механизм. Служит для преобразования одного вида вращательного движения (звена 1) в другое (звена 3 , на рис. 1,в) или непрерывного вращательного движения (звена 1) в возвратно-поступательное (звена 5 на рис. 1,д). Такие четырех и шестизвенные кулисные механизмы применяют в строгальных и дол
Слайд 47

Кулисный механизм

Служит для преобразования одного вида вращательного движения (звена 1) в другое (звена 3 , на рис. 1,в) или непрерывного вращательного движения (звена 1) в возвратно-поступательное (звена 5 на рис. 1,д). Такие четырех и шестизвенные кулисные механизмы применяют в строгальных и долбежных станках, поршневых насосах и компрессорах. Смотри рисунок 1.

Кулисный механизм, рис.1
Слайд 48

Кулисный механизм, рис.1

Кулисный механизм, рис.2
Слайд 49

Кулисный механизм, рис.2

Схема плоского четырехшарнирника
Слайд 50

Схема плоского четырехшарнирника

Пример плоских механизмов с низшими парами. Кривошипно-ползунный механизм (см. ниже на рисунке ДВС: а — конструкция; б — схема) — один из самых распространенных, он является основным механизмом в поршневых машинах (двигатели внутреннего сгорания, компрессоры, насосы), в ковочных машинах и прессах и
Слайд 51

Пример плоских механизмов с низшими парами. Кривошипно-ползунный механизм (см. ниже на рисунке ДВС: а — конструкция; б — схема) — один из самых распространенных, он является основным механизмом в поршневых машинах (двигатели внутреннего сгорания, компрессоры, насосы), в ковочных машинах и прессах и т. д. На рис. в изображена схема внеосного (дезаксиального) кривошипно-ползунного механизма.

Основы структуры механизмов, структурный и кинематический анализ Слайд: 52
Слайд 52
Мальтийский механизм. Мальтийский механизм (рис. 1) преобразует непрерывное вращение входного звена — кривошипа 1 в прерывистое (с остановами) вращение выходного звена — креста 2. Механизм имеет стойку 3 и высшую пару, образованную цевкой В кривошипа и пазом креста.
Слайд 53

Мальтийский механизм

Мальтийский механизм (рис. 1) преобразует непрерывное вращение входного звена — кривошипа 1 в прерывистое (с остановами) вращение выходного звена — креста 2. Механизм имеет стойку 3 и высшую пару, образованную цевкой В кривошипа и пазом креста.

Мальтийский механизм (рис.1)
Слайд 54

Мальтийский механизм (рис.1)

Планы скоростей ускорений. Планы скоростей и ускорений. Планом скоростей механизма называют чертеж, на котором изображены в виде отрезков векторы, равные по модулю и по направлению скоростям различных точек звеньев механизма в данный момент. План скоростей для механизма является совокупностью нескол
Слайд 55

Планы скоростей ускорений

Планы скоростей и ускорений. Планом скоростей механизма называют чертеж, на котором изображены в виде отрезков векторы, равные по модулю и по направлению скоростям различных точек звеньев механизма в данный момент. План скоростей для механизма является совокупностью нескольких планов скоростей для отдельных звеньев, у которых полюса планов р являются общей точкой — полюсом плана скоростей механизма. Чертеж, на котором изображены в виде отрезков векторы, равные по модулю и направлению ускорениям различных точек звеньев механизма в данный момент, называют планом ускорений механизма.

На рис. а),б),в),г) показаны различные виды построения планов
Слайд 56

На рис. а),б),в),г) показаны различные виды построения планов

Абсолютные и относительные угловые скорости звена. Абсолютная скорость звена на плане скоро- стей изображается всегда линией, исходящей из полюса Р, а относительные – линиями, соединяющими концы векторов абсолютных скоростей. Смотри рис.1.
Слайд 57

Абсолютные и относительные угловые скорости звена

Абсолютная скорость звена на плане скоро- стей изображается всегда линией, исходящей из полюса Р, а относительные – линиями, соединяющими концы векторов абсолютных скоростей. Смотри рис.1.

Абсолютные и относительные угловые скорости звеньев, рис.1
Слайд 58

Абсолютные и относительные угловые скорости звеньев, рис.1

Вывод по данной теме лекции 1. В результате рассмотрения обширного материала в данной лекции мы достаточно подробно ознакомились с основными понятиями и определениями ТММ, изучили основы структуры механизмов, cуть их структурного и кинематического анализа.
Слайд 59

Вывод по данной теме лекции 1

В результате рассмотрения обширного материала в данной лекции мы достаточно подробно ознакомились с основными понятиями и определениями ТММ, изучили основы структуры механизмов, cуть их структурного и кинематического анализа.

Вопросы для самопроверки. Что называется машиной, механизмом? Какие виды механизмов бывают? Что такое кинематическая схема? Что понимают под кинематической парой и цепью? Что такое структурный и кинематический анализ механизма? Какие виды трения вам известны? Что такое коэффициент трения скольжения
Слайд 60

Вопросы для самопроверки

Что называется машиной, механизмом? Какие виды механизмов бывают? Что такое кинематическая схема? Что понимают под кинематической парой и цепью? Что такое структурный и кинематический анализ механизма? Какие виды трения вам известны? Что такое коэффициент трения скольжения и качения? Какие факторы влияют на величину силы трения скольжения? Принцип построения планов скоростей и ускорений?

Список похожих презентаций

Динамический анализ механизмов

Динамический анализ механизмов

План лекции. Силовой анализ механизмов. Силы, действующие на звенья механизма. Силы движущие и силы производственных сопротивлений. Механические характеристики ...
Основы термодинамики необратимых процессов

Основы термодинамики необратимых процессов

Основные понятия термодинамики. Термодинамическая система – совокупность тел, способных энергетически взаимодействовать между собой и с другими телами ...
Основы термодинамики

Основы термодинамики

56 III ТЕРМОДИНАМИКА ТЕМА 5 Основы термодинамики. 1-ый закон ТД для изобарического процесса. 57 III ТЕРМОДИНАМИКА ТЕМА 5 Основы термодинамики. Исследование ...
Основы термодинамики

Основы термодинамики

Внутренняя энергия. Сумма кинетических энергий хаотического движения всех частиц тела относительно центра масс тела (молекул, атомов) и потенциальных ...
Основы теории относительности

Основы теории относительности

Содержание. Несостоятельность теории Галилея Теории учёных Постулаты теории относительности А.Эйнштейна Релятивистский закон сложения скоростей Относительность ...
Спектры и спектральный анализ

Спектры и спектральный анализ

ДИСПЕРСИЯ — зависимость показателя преломления от длины волны. n =------ C V. Волны разной длины в веществе распространяются с разной скоростью. Почему ...
Примеры простых механизмов

Примеры простых механизмов

РЫЧАГ. НАКЛОННАЯ ПЛОСКОСТЬ. Блок Ворот Клин Винт. Рычаг. Применение рычага для поднятия груза. Сила, приложенная человеком, меньше силы F’, действующей ...
Основы электродинамики

Основы электродинамики

СОДЕРЖАНИЕ. Опыт Эрстеда Силовые линии Направление силовых линий Магнитная индукция Опыт Ампера Сила Ампера Сила Лоренца Применение магнитного поля. ...
Основы кинематики

Основы кинематики

Основные понятия:. Материальная точка- это тело, размеры которого можно не учитывать в данных условиях. Перемещение(s). Траектория, путь(l)-длина ...
Основы естествознания

Основы естествознания

1.1. Естествознание. Определение и содержание понятия. Задачи естествознания. Слово «естествознание» (естество – природа) означает знание о природе, ...
Основы динамики

Основы динамики

Цель урока:. повторить и систематизировать материал по теме «Основы динамики»; научить определять логическую связь между понятиями и явлениями; научить ...
Основы Вакуумной Техники 9 лекция

Основы Вакуумной Техники 9 лекция

Средства получения вакуума : Основной путь получения вакуума– использование вакуумных насосов Второй – использование ловушек, которые обычно служат ...
Основные направления эконофизики. Фрактальный анализ финансовых рядов

Основные направления эконофизики. Фрактальный анализ финансовых рядов

Эконофизика. Этапы развития. 1995 1997 2001 2002 2009 Настоящее время. Появление термина для обозначения работ специалистов по статфизике в области ...
Описание дефектов кристаллической структуры в рамках теории упругости

Описание дефектов кристаллической структуры в рамках теории упругости

В настоящем разделе рассматриваются задачи, в которых концентрацию дефектов считается малой, то есть можно предполагать, что дефекты образуют в матрице ...
Люминесцентный анализ

Люминесцентный анализ

Люминесценция – (lumen – свет; escent – суффикс, означает слабое действие) способность некоторых веществ испускать видимый свет под воздействием различного ...
Основы технических измерений

Основы технических измерений

Метрология - это наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Основные задачи метрологии ...
Основы физики

Основы физики

Предмет физики. Методы физического познания: наблюдение, опыт, эксперимент, гипотеза, теория. Физика как культура моделирования. Математика и физика. ...
Основы механики

Основы механики

Макроскопическими называются обычные, окружающие нас тела, состоящие из огромного количества молекул или атомов. Медленные или нерелятивистские движения ...
Основы ядерной физики

Основы ядерной физики

1.1. Строение атома. Понятие радиоактивности. АТОМ – самая маленькая часть химического элемента, сохраняющая все его свойства, его размеры 10-8 см, ...
Основы МКТ идеального газа

Основы МКТ идеального газа

Ни пуха, ни пера! Часть 1. В этой части необходимо ответить на вопросы с выбором ответа. Время ответа на каждый вопрос ограничено в зависимости от ...

Конспекты

Простые механизмы и их применение. КПД простых механизмов

Простые механизмы и их применение. КПД простых механизмов

Урок физики7 класс. Тема урока: «Простые механизмы и их применение. КПД простых механизмов». Цели урока: повторить виды простейших механизмов, их ...
Основы молекулярно – кинетической теории

Основы молекулярно – кинетической теории

Цикл уроков физики в 10 классе. Тема: Основы молекулярно – кинетической теории (5 часов). В процессе работы над модулем вы должны изучить. :. ...
Основы электродинамики

Основы электродинамики

Дата. 08.10.2014. класс. 11А предмет. физика. . . Тема раздела:. Основы электродинамики(продолжение). . . . . Тема. : Явление электромагнитной ...
Основы МКТ

Основы МКТ

Барышенская Е. Н. МОУ «Дубовская СОШ Белгородского района Белгородской области». . КОНТРОЛИРУЕМ ЗНАНИЯ УЧАЩИХСЯ. Барышенская Е. Н. Данный ...
Основы МКТ

Основы МКТ

Разработка открытого урока по физике в 10 классе по теме «Основы МКТ». Учитель Аверина С.Г. (2011-2012 уч.год). Цель. : проверить уровень усвоения ...
Основы механики

Основы механики

Игра. «Угадайка». по теме. «Основы механики». ( по принципу телевизионной игры «Угадай мелодию»). Правила игры:. 1,2 туры играются по нижеприведенным ...
Основы кинематики и динамики

Основы кинематики и динамики

Основы кинематики и динамики. Вариант 1. Часть 1. В каком случае можно считать автомобиль материальной точкой? . 1)Автомобиль движется по ...
Основы динамики Ньютона

Основы динамики Ньютона

Тематическая аттестация по физике, «Основы динамики Ньютона», 10 класс. . . Сколько вариантов зачётной работы используют преподаватели при тематической ...
Музей простых механизмов

Музей простых механизмов

Урок по физике. Тема. : « Музей простых механизмов». Класс. : 7. Тип урока. :. . Урок обобщения и систематизации знаний. Ход урока:. № п/п. ...
Вычисление КПД простых механизмов на примере наклонной плоскости

Вычисление КПД простых механизмов на примере наклонной плоскости

Разработка урока по физике в 7 классе «Вычисление КПД простых механизмов на примере наклонной плоскости». Цели урока:. Закрепить понятие ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:2 декабря 2018
Категория:Физика
Содержит:60 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации