- Люминесцентный анализ

Презентация "Люминесцентный анализ" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Люминесцентный анализ" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

24.12.2017. Томск, ТПУ, ИГНД, ГЭГХ. Лекция №2 Люминесцентный анализ
Слайд 1

24.12.2017

Томск, ТПУ, ИГНД, ГЭГХ

Лекция №2 Люминесцентный анализ

Люминесценция – (lumen – свет; escent – суффикс, означает слабое действие) способность некоторых веществ испускать видимый свет под воздействием различного рода излучений (ультрафиолетового, рентгеновского, лазерного и пр.). В настоящее время люминесценцией называют неравновесное излучение, избыточн
Слайд 2

Люминесценция – (lumen – свет; escent – суффикс, означает слабое действие) способность некоторых веществ испускать видимый свет под воздействием различного рода излучений (ультрафиолетового, рентгеновского, лазерного и пр.). В настоящее время люминесценцией называют неравновесное излучение, избыточное по отношению к тепловому излучению тела, после возбуждения продолжающееся в течение времени, значительно превышающего период световых колебаний (τ ~ 10–10).

На практике люминесценцию часто разделяют на: флюоресценцию, быстро затухающую после окончания возбуждения (от 10–9 до 10–1 с); фосфоресценцию, затухание которой заметно на глаз (дольше 10–1 с). Зеленое свечение урана в ультрафиолетовых лучах
Слайд 3

На практике люминесценцию часто разделяют на: флюоресценцию, быстро затухающую после окончания возбуждения (от 10–9 до 10–1 с); фосфоресценцию, затухание которой заметно на глаз (дольше 10–1 с).

Зеленое свечение урана в ультрафиолетовых лучах

В зависимости от способа возбуждения выделяют несколько видов люминесценции, различающихся также характером физических процессов, протекающих в минерале: фотолюминесценция – возбуждение производится электромагнитным излучением оптических частот; катодолюминесценция – возбуждение осуществляется за сч
Слайд 4

В зависимости от способа возбуждения выделяют несколько видов люминесценции, различающихся также характером физических процессов, протекающих в минерале: фотолюминесценция – возбуждение производится электромагнитным излучением оптических частот; катодолюминесценция – возбуждение осуществляется за счет энергии падающих электронов; радиолюминесценция – возбуждение возникает под действием различных видов радиоактивного излучения;

хемолюминесценция – возбуждение возникает за счет энергии химических реакций; термолюминесценция – свечение возникающее при нагревании; триболюминесценция – свечении возникающее при трении.
Слайд 5

хемолюминесценция – возбуждение возникает за счет энергии химических реакций; термолюминесценция – свечение возникающее при нагревании; триболюминесценция – свечении возникающее при трении.

Для возбуждения люминесценции применяют водородные, ксеноновые, реже ртутные газоразрядные лампы низкого, высокого и сверхвысокого давления различной мощности. Для наблюдения фотолюминесценции применяются различного вида осветители (ОИ-18, ЛСП-103), люминоcкопы (ЛРВ-1) микроскоп-спектрофотометры (МС
Слайд 6

Для возбуждения люминесценции применяют водородные, ксеноновые, реже ртутные газоразрядные лампы низкого, высокого и сверхвысокого давления различной мощности. Для наблюдения фотолюминесценции применяются различного вида осветители (ОИ-18, ЛСП-103), люминоcкопы (ЛРВ-1) микроскоп-спектрофотометры (МСФУ-К) предназначенные для фотометрических исследований микрообъектов и микроучастков макрообъектов

Для более точного объективного фотометрирования и получения спектра люминесценции применяют люминесцентный фотометр и спектрографы. Кроме того для оперативной диагностики в полевых условиях применяют различные варианты отечественных полевых осветителей-люминоскопов («Шеелит», «Минилюм» и т.д).
Слайд 7

Для более точного объективного фотометрирования и получения спектра люминесценции применяют люминесцентный фотометр и спектрографы. Кроме того для оперативной диагностики в полевых условиях применяют различные варианты отечественных полевых осветителей-люминоскопов («Шеелит», «Минилюм» и т.д).

Люминоскоп ЛРБ-1. Микроскоп-спектрофотометр МСФУ-К
Слайд 8

Люминоскоп ЛРБ-1

Микроскоп-спектрофотометр МСФУ-К

Лекция №2 Методы электронной микроскопии
Слайд 9

Лекция №2 Методы электронной микроскопии

Электронная микроскопия – совокупность методов исследования с помощью электронных микроскопов микроструктуры тел (вплоть до атомно-молекулярного уровня), их локального состава и локализованных на поверхностях или в микрообъёмах тел электрических и магнитных полей (микрополей).
Слайд 10

Электронная микроскопия – совокупность методов исследования с помощью электронных микроскопов микроструктуры тел (вплоть до атомно-молекулярного уровня), их локального состава и локализованных на поверхностях или в микрообъёмах тел электрических и магнитных полей (микрополей).

Электронный микроскоп – это прибор, который дает возможность получать сильные увеличения объектов, используя для их освещения электроны. Электронный микроскоп позволяет видеть такие мелкие детали, которые не разрешимы в световом (оптическом) микроскопе и широко применяется в научных исследованиях ст
Слайд 11

Электронный микроскоп – это прибор, который дает возможность получать сильные увеличения объектов, используя для их освещения электроны. Электронный микроскоп позволяет видеть такие мелкие детали, которые не разрешимы в световом (оптическом) микроскопе и широко применяется в научных исследованиях строения вещества.

По принципу действия и способу исследования объектов различают несколько типов: просвечивающие, отражательные, эмиссионные, растровые, теневые электронные микроскопы. Наиболее распространены микроскопы просвечивающего и растрового типа, обладающие высокой разрешающей способностью и универсальностью.
Слайд 12

По принципу действия и способу исследования объектов различают несколько типов: просвечивающие, отражательные, эмиссионные, растровые, теневые электронные микроскопы. Наиболее распространены микроскопы просвечивающего и растрового типа, обладающие высокой разрешающей способностью и универсальностью.

Электронные микроскопы фирмы Karl Zeiss: а)– просвечивающий; б)– растровый.
Слайд 13

Электронные микроскопы фирмы Karl Zeiss: а)– просвечивающий; б)– растровый.

По разрешающей способности электронные микроскопы разделяют на три класса:
Слайд 14

По разрешающей способности электронные микроскопы разделяют на три класса:

Основные виды электронной микроскопия: Просвечивающая электронная микроскопия (ПЭМ) Растровая электронная микроскопия (РЭМ) Электронно-зондовый микроанализ
Слайд 15

Основные виды электронной микроскопия: Просвечивающая электронная микроскопия (ПЭМ) Растровая электронная микроскопия (РЭМ) Электронно-зондовый микроанализ

Просвечивающая электронная микроскопия (ПЭМ) позволяет решать широкий круг минералогических задач, и этот круг расширяется по мере развития метода. В ПЭМ, в зависимости от решаемых задач, используются различные методы: суспензии, реплики, ионное травление, ультрамикротомирование, декорирование, прям
Слайд 16

Просвечивающая электронная микроскопия (ПЭМ) позволяет решать широкий круг минералогических задач, и этот круг расширяется по мере развития метода. В ПЭМ, в зависимости от решаемых задач, используются различные методы: суспензии, реплики, ионное травление, ультрамикротомирование, декорирование, прямое наблюдение плоских сеток и др.

Просвечивающий электронный микроскоп (ПЭМ) во многом схож со световым микроскопом. Отличие между ними в том, что для освещения образцов в ПЭМ используется не свет, а пучок электронов. В состав обычного просвечивающего электронного микроскопа входят: электронный прожектор, ряд конденсорных линз, объе
Слайд 17

Просвечивающий электронный микроскоп (ПЭМ) во многом схож со световым микроскопом. Отличие между ними в том, что для освещения образцов в ПЭМ используется не свет, а пучок электронов. В состав обычного просвечивающего электронного микроскопа входят: электронный прожектор, ряд конденсорных линз, объективная линза и проекционная система, которая соответствует окуляру, но проецирует действительное изображение на экран. Источником электронов обычно является нагреваемый катод из вольфрама или гексаборида лантана.

Растровый электронный микроскоп (РЭМ) широко используется в научно-исследовательских лабораториях. По своим техническим возможностям он сочетает в себе качества как светового (СМ), так и просвечивающего электронного (ПЭМ) микроскопов, но является более многофункциональным.
Слайд 18

Растровый электронный микроскоп (РЭМ) широко используется в научно-исследовательских лабораториях. По своим техническим возможностям он сочетает в себе качества как светового (СМ), так и просвечивающего электронного (ПЭМ) микроскопов, но является более многофункциональным.

В основе РЭМ лежит сканирование поверхности образца электронным зондом и детектирование (распознавание) возникающего при этом широкого спектра излучений. Сигналами для получения изображения в РЭМ служат вторичные, отраженные и поглощённые электроны. Принцип действия РЭМ основан на использовании неко
Слайд 19

В основе РЭМ лежит сканирование поверхности образца электронным зондом и детектирование (распознавание) возникающего при этом широкого спектра излучений. Сигналами для получения изображения в РЭМ служат вторичные, отраженные и поглощённые электроны. Принцип действия РЭМ основан на использовании некоторых эффектов, возникающих при облучении поверхности объектов тонко сфокусированным пучком электронов – зондом. В результате взаимодействия электронов с образцом (веществом) генерируются различные сигналы.

С помощью электронно-зондового микроанализа возможно определение элементного состава локального участка исследуемого вещества. Электронно-зондовый микроанализ позволяет обнаружить присутствие в объеме порядка 0,1-2 мкм3 практически всех элементов периодической системы в пределах 2–20 % их массового
Слайд 20

С помощью электронно-зондового микроанализа возможно определение элементного состава локального участка исследуемого вещества. Электронно-зондовый микроанализ позволяет обнаружить присутствие в объеме порядка 0,1-2 мкм3 практически всех элементов периодической системы в пределах 2–20 % их массового содержания. С его помощью можно проводить количественный химический анализ шлифов и аншлифов из сплавов, минералов, шлаков, органических и неорганических соединений на все элементы без разрушения исходного образца. Абсолютная чувствительность электронно-зондового микроанализа гораздо меньше, чем чувствительность методов эмиссионного спектрального или рентгеновского флуоресцентного анализа.

Современные электронно-зондовые микроанализаторы – это сложные вакуумные приборы, состоящие из электронно-оптической системы (электронная пушка и электромагнитные линзы), оптического микроскопа и устройства для сканирования распределения элементов по поверхности объекта (рентгеновский спектрометр).
Слайд 21

Современные электронно-зондовые микроанализаторы – это сложные вакуумные приборы, состоящие из электронно-оптической системы (электронная пушка и электромагнитные линзы), оптического микроскопа и устройства для сканирования распределения элементов по поверхности объекта (рентгеновский спектрометр). Рентгеновские спектрометры улавливают возникшее в образце рентгеновское излучение, а специальные приставки автоматически регистрируют интенсивность линий и все параметры процесса.

Микроанализаторы (Oxford instruments)

Список похожих презентаций

Термодинамический анализ процессов в компрессорах

Термодинамический анализ процессов в компрессорах

Рис. 7.1. Компрессор называется идеальным если: сжатый в цилиндре газ полностью без остатка выталкивается поршнем; отсутствуют потери энергии в клапанах; ...
Спектры и спектральный анализ

Спектры и спектральный анализ

Источники излучений. Виды спектров. Сплошной спектр. Это спектры, содержащие все длины волны определенного диапазона. Излучают нагретые твердые и ...
Спектры и спектральный анализ

Спектры и спектральный анализ

ДИСПЕРСИЯ — зависимость показателя преломления от длины волны. n =------ C V. Волны разной длины в веществе распространяются с разной скоростью. Почему ...
Спектральный анализ

Спектральный анализ

это метод определения химического состава и других характеристик вещества по его спектру Применение Позволяет обнаружить в веществе примеси массой ...
Основы структуры механизмов, структурный и кинематический анализ

Основы структуры механизмов, структурный и кинематический анализ

ПЛАН ЛЕКЦИИ ТЕМА 1. Основы структуры механизмов, структурный и кинематический анализ Введение. Машина и механизм. Структура механизмов. Звено. Кинематическая ...
Основные направления эконофизики. Фрактальный анализ финансовых рядов

Основные направления эконофизики. Фрактальный анализ финансовых рядов

Эконофизика. Этапы развития. 1995 1997 2001 2002 2009 Настоящее время. Появление термина для обозначения работ специалистов по статфизике в области ...
Динамический анализ механизмов

Динамический анализ механизмов

План лекции. Силовой анализ механизмов. Силы, действующие на звенья механизма. Силы движущие и силы производственных сопротивлений. Механические характеристики ...
Виды спектров. Спектральный анализ

Виды спектров. Спектральный анализ

Спектры излучения. Распределение энергии по частотам (спектральная плотность интенсивности излучения). Непрерывный спектр. Дают тела, находящиеся ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Физика
Содержит:21 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации