- Логарифмы с параметрами

Презентация "Логарифмы с параметрами" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16

Презентацию на тему "Логарифмы с параметрами" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 16 слайд(ов).

Слайды презентации

Проект по алгебре на тему: «Логарифмы с параметрами». Авторы: Балаев Игорь, Калашников Иван, Редькин Александр.
Слайд 1

Проект по алгебре на тему: «Логарифмы с параметрами»

Авторы: Балаев Игорь, Калашников Иван, Редькин Александр.

Введение. Изучение многих физических процессов и геометрических закономерностей часто приводит к решению уравнений, содержащих параметр. Решение задач с параметрами вызывает большие трудности у учащихся, так как их изучение не является отдельной составляющей школьного курса математики, и рассматрива
Слайд 2

Введение

Изучение многих физических процессов и геометрических закономерностей часто приводит к решению уравнений, содержащих параметр. Решение задач с параметрами вызывает большие трудности у учащихся, так как их изучение не является отдельной составляющей школьного курса математики, и рассматривается только на немногочисленных факультативных занятиях. Между тем, параметрические уравнения, в том числе и логарифмические, входят в состав сборников ЕГЭ. А ЕГЭ сдавать придется каждому. Данный проект должен помочь в изучении таких интересных тем, как «Логарифмы» и «Параметры», а так же должен помочь при подготовке к единому государственному экзамену.

Анализ ситуации. Логарифмы, а тем более с параметрами – вещь очень сложная. Поэтому перед началом проекта был проведен опрос в нашем классе (22 человека, 3 не участвовали в опросе) : «Можете ли вы решать логарифмы с параметрами?». Результаты (представлены в диаграмме) оказались очень интересными:
Слайд 3

Анализ ситуации

Логарифмы, а тем более с параметрами – вещь очень сложная. Поэтому перед началом проекта был проведен опрос в нашем классе (22 человека, 3 не участвовали в опросе) : «Можете ли вы решать логарифмы с параметрами?». Результаты (представлены в диаграмме) оказались очень интересными:

Результаты опроса
Слайд 4

Результаты опроса

Как мы видим из результатов опроса, логарифмические уравнения с параметрами особой популярностью не пользуются. Но это и не удивительно: чтобы их решать, нужно знать все о логарифмах.
Слайд 5

Как мы видим из результатов опроса, логарифмические уравнения с параметрами особой популярностью не пользуются. Но это и не удивительно: чтобы их решать, нужно знать все о логарифмах.

Определение логарифма. Логарифмом положительного числа в по основанию а, где а>0,a≠1,называется показатель степени c, в которую нужно возвести число а ,чтобы получилось в. logab=c, b>0, a>0, a≠1 ax=b
Слайд 6

Определение логарифма

Логарифмом положительного числа в по основанию а, где а>0,a≠1,называется показатель степени c, в которую нужно возвести число а ,чтобы получилось в. logab=c, b>0, a>0, a≠1 ax=b

Основное логарифмическое тождество. =
Слайд 7

Основное логарифмическое тождество

=

Свойства логарифмов. Пусть а>0, a=1, b>0, c>0, r, p- любые действительные числа.
Слайд 8

Свойства логарифмов

Пусть а>0, a=1, b>0, c>0, r, p- любые действительные числа.

Параметры. С логарифмами и его свойствами разобрались, теперь приступим к параметрам. Определение: Параметрами называются переменные a, b, c, ..., k, которые при решении данного уравнения считаются постоянными. Решить уравнение, содержащее параметры, это значит, для каждой допустимой системы значени
Слайд 9

Параметры

С логарифмами и его свойствами разобрались, теперь приступим к параметрам. Определение: Параметрами называются переменные a, b, c, ..., k, которые при решении данного уравнения считаются постоянными. Решить уравнение, содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения

Виды логарифмических уравнений с параметрами. Логарифмические уравнения с параметрами можно разделить на три вида в зависимости от местоположения параметра: Уравнения, содержащие параметры в логарифмируемом выражении. Уравнения, содержащие параметры в основании. Уравнения, содержащие параметры и в о
Слайд 10

Виды логарифмических уравнений с параметрами

Логарифмические уравнения с параметрами можно разделить на три вида в зависимости от местоположения параметра: Уравнения, содержащие параметры в логарифмируемом выражении. Уравнения, содержащие параметры в основании. Уравнения, содержащие параметры и в основании и в логарифмируемом выражении.

Уравнения, содержащие параметры в логарифмируемом выражении. Решить при всех a: logx + 1(x2 + a) = 2. Решение: Из определения логарифма следует, что x + 1 > 0, x + 1 ≠ 1 и x2 + a > 0. Получаем уравнение x2 + a = (x + 1)2. Из ограничения x + 1 > 0 следует, что x2 + a > 0. Следовательно, н
Слайд 11

Уравнения, содержащие параметры в логарифмируемом выражении

Решить при всех a: logx + 1(x2 + a) = 2. Решение: Из определения логарифма следует, что x + 1 > 0, x + 1 ≠ 1 и x2 + a > 0. Получаем уравнение x2 + a = (x + 1)2. Из ограничения x + 1 > 0 следует, что x2 + a > 0. Следовательно, нужно найти решения уравнения x2+a= =(x+1)2, удовлетворяющие неравенствам x + 1 > 0 и x ≠ 0. Раскроем скобки в правой части уравнения: x2 + a = x2 + 2x + 1. Вычитая x2 + 2x + a из обеих частей уравнения, находим –2x = 1 – a,откуда получаем: x= Из ограничения x + 1 > 0 следует ˃0, откуда a – 1 + 2 > 0. Значит, a > –1. Из ограничения x ≠ 0 находим ≠0 , что влечет a ≠ 1. Ответ: Если a > –1, a ≠ 1, то одно решение x= . Если a ≤ –1 или a = 1, то решений нет.

Уравнения, содержащие параметры в основании. Решить при всех а: loga(x2+2x-8)=2 Решение: Из определения логарифма следует, что a≠1, a>0, x2+2x-8>0(x2). Значит, требуется решить уравнение a2=x2+2x-8. Решая это уравнение, получаем х= или х= . Подкоренное выражение положительно при всех значениях
Слайд 12

Уравнения, содержащие параметры в основании

Решить при всех а: loga(x2+2x-8)=2 Решение: Из определения логарифма следует, что a≠1, a>0, x2+2x-8>0(x2). Значит, требуется решить уравнение a2=x2+2x-8. Решая это уравнение, получаем х= или х= . Подкоренное выражение положительно при всех значениях а, поэтому дальнейших ограничений не последует. Ответ: Если a > 0, a ≠ 1, то x= . Если a ≤ 0 или a = 1, то решений нет.

2

Уравнения, содержащие параметры и в основании и в логарифмируемом выражении. Решить при всех a уравнение loga(ax + 1) = 1. Решение Из определения логарифма следует, что a >0, a≠1, ax + 1 > 0. Получаем уравнение ax + 1= a. Заметим, что так как a > 0, то ax + 1 = a > 0. Следовательно, надо
Слайд 13

Уравнения, содержащие параметры и в основании и в логарифмируемом выражении

Решить при всех a уравнение loga(ax + 1) = 1. Решение Из определения логарифма следует, что a >0, a≠1, ax + 1 > 0. Получаем уравнение ax + 1= a. Заметим, что так как a > 0, то ax + 1 = a > 0. Следовательно, надо решить уравнение ax +1= a при ограничениях на параметр a: a > 0, a ≠ 1. Вычитая из обеих частей уравнения единицу, получим ax = a – 1. Так как a > 0, то уравнение имеет единственное решение x= . Ответ: При a ≤ 0 и a = 1 решений нет. При a > 0 и a ≠ 1 одно решение x= .

Что дал этот проект? В процессе работы мы овладели начальными навыками решений параметрических уравнений, научились решать логарифмические уравнения с параметрами. Эта работа позволила нам лучше изучить и запомнить все свойства логарифмов. А главное, мы окончательно убедились в том, что есть вещи по
Слайд 14

Что дал этот проект?

В процессе работы мы овладели начальными навыками решений параметрических уравнений, научились решать логарифмические уравнения с параметрами. Эта работа позволила нам лучше изучить и запомнить все свойства логарифмов. А главное, мы окончательно убедились в том, что есть вещи похуже проектной по технологии.

Результаты повторного опроса. По окончанию данного проекта был проведен повторный опрос на тему «Можете ли вы решать логарифмические уравнения с параметрами?». Результаты оказались намного лучше предыдущих: теперь все 100% (19 человек) ответили «не могу».
Слайд 15

Результаты повторного опроса

По окончанию данного проекта был проведен повторный опрос на тему «Можете ли вы решать логарифмические уравнения с параметрами?». Результаты оказались намного лучше предыдущих: теперь все 100% (19 человек) ответили «не могу».

Над проектом работали: Редькин Александр (ka3ak) Балаев Игорь (STiciER) Калашников Иван (kalach) ka3ak.my1.ru
Слайд 16

Над проектом работали:

Редькин Александр (ka3ak) Балаев Игорь (STiciER) Калашников Иван (kalach) ka3ak.my1.ru

Список похожих презентаций

Аналитический и численный методы решения систем уравнений с параметром

Аналитический и численный методы решения систем уравнений с параметром

АНАЛИТИЧЕСКИЙ И ЧИСЛЕННЫЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ПАРАМЕТРОМ. Астрахарчик Н.А. Система симметрична относительно знака x. Система симметрична ...
Алгоритмы работы с величинами

Алгоритмы работы с величинами

Цель:. Познакомиться с понятием «величина» и показать ее назначение в программировании. 1. Как называется алгоритм, записанный на «понятном» компьютеру ...
Алгоритмы с ветвлениями

Алгоритмы с ветвлениями

Найди ошибку. Вставить ключ в замочную скважину. Достать ключ из кармана. 3. Вынуть ключ. 4. Повернуть ключ два раза против часовой стрелки. Найди ...
Алгоритм с ветвлениями и циклами.

Алгоритм с ветвлениями и циклами.

Линейный алгоритм. "Соберись в школу" Начало Конец Встань Умойся Сделай зарядку Оденься Позавтракай Собери портфель. Ветвление. "Раскрась крышу дома". ...
Алгоритмы внутренних точек с приближенным решением вспомогательной задачи

Алгоритмы внутренних точек с приближенным решением вспомогательной задачи

1939 – линейное программирование (Канторович). 1947 – симплекс-метод (Данциг). 1967 – метод внутренних точек (Дикин). 1984 – полиномиальный МВТ (Кармаркар). ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
Алгебраические дроби с разными знаменателями

Алгебраические дроби с разными знаменателями

Повторить правила сложения и вычитания числовых дробей с разными знаменателями; Изучить правила сложения и вычитания алгебраических дробей с разными ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
«Решение задач с помощью пропорций»

«Решение задач с помощью пропорций»

Найти значение Х: Х:3=4:6 5:Х=2:6 7:3=Х:18 Устная работа. Указать вид пропорциональной зависимости:. Какова зависимость пути от времени? Какова зависимость ...
«Действия с дробями», «Нахождение дроби и процентов от числа»

«Действия с дробями», «Нахождение дроби и процентов от числа»

Систематизация знаний по темам: «Действия с дробями», «Нахождение дроби и процентов от числа», Отработка практических навыков выполнения действий ...
«Действия с обыкновенными дробями (2)»

«Действия с обыкновенными дробями (2)»

Урок по теме «Действия с обыкновенными дробями». На острове Дробей. 1. Сократите дроби. 2. Исключите целую часть из числа. 3. Переведите число в неправильную ...
«Действия с дробями»

«Действия с дробями»

Цели урока:. Устный счет. Какая часть каждой фигуры окрашена? Есть ли на чертежах ошибки? Найдите их и назовите ошибку. Нет ли в чертежах ошибок? ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Учим таблицу умножения с Машей"

"Учим таблицу умножения с Машей"

Ты ломаешь голову, как быстро выучить таблицу умножения? Приглашаю тебя в удивительный сад к Маше, где растут необыкновенные яблочки. На одной стороне ...
"Логарифмы"

"Логарифмы"

Цели урока. повторить определение логарифма числа, основное логарифмическое тождество; закрепить основные свойства логарифмов; усилить практическую ...
"Все действия с обыкновенными дробями"

"Все действия с обыкновенными дробями"

Великие открытия ученых математиков ХХ века. «Математика является значительно большим, чем наука, поскольку она является языком науки». Нильс Бор, ...

Конспекты

Взаимосвязанные задачи с десятичными дробями

Взаимосвязанные задачи с десятичными дробями

Тамбовское областное государственное автономное образовательное учреждение – общеобразовательная школа – интернат. . «Мичуринский лицей». ...
Арифметические действия с числами

Арифметические действия с числами

Методическая разработка урокаматематики. «Арифметические действия с. числами. ». для учащихся 6-го класса. Аннотация. Повторение изученного ...
Вводное повторение. Все действия с десятичными дробями

Вводное повторение. Все действия с десятичными дробями

Галкина Любовь Валентиновна. МБОУ «Новопоселёновская средняя общеобразовательная школа» Курского района Курской области. Учитель математики. ...
Арифметические действия с целыми числами

Арифметические действия с целыми числами

Ваш выбор: «Курить или долго жить.». Урок по математике в 6 кл коррекционной школы. Тип урока. . Обобщение и закрепление знаний по теме : ...
Арифметические действия с положительными и отрицательными числами

Арифметические действия с положительными и отрицательными числами

. Муниципальное бюджетное общеобразовательное учреждение«Лицей №2». Методическая разработка урокаматематики. «Арифметические действия ...
Арифметические действия с многозначными числами

Арифметические действия с многозначными числами

Тема:. «Арифметические действия с многозначными числами». Цель:. закрепить навыки сложения, вычитания, умножения и деления многозначных чисел; ...
Арифметические действия с дробями

Арифметические действия с дробями

. Муниципальное бюджетное общеобразовательное учреждение«Лицей №2». Методическая разработка урокаматематики. «Арифметические действия ...
Арифметические действия с дробями

Арифметические действия с дробями

. Муниципальное бюджетное общеобразовательное учреждение«Лицей №2». Урокматематики для 5 класса. «Арифметические действия с дробями». ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:Балаев Игорь, Калашников Иван, Редькин Александр
Содержит:16 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации