- Удивительные кривые линии Секция прикладной математики

Презентация "Удивительные кривые линии Секция прикладной математики" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24

Презентацию на тему "Удивительные кривые линии Секция прикладной математики" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 24 слайд(ов).

Слайды презентации

КРАСНОЯРСКАЯ РЕГИОНАЛЬНАЯ ДЕТСКО-МОЛОДЕЖНАЯ ОБЩЕСТВЕННАЯ ОРГАНИЗАЦИЯ «НАУЧНОЕ ОБЩЕСТВО УЧАЩИХСЯ» МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ЛИЦЕЙ №8» 660062, г. Крупской, 10 В. Тел. 247-66-52, 247-66-40, Эл. Адрес: lyc8@mail.ru. Удивительные кривые линии Секция прикладн
Слайд 1

КРАСНОЯРСКАЯ РЕГИОНАЛЬНАЯ ДЕТСКО-МОЛОДЕЖНАЯ ОБЩЕСТВЕННАЯ ОРГАНИЗАЦИЯ «НАУЧНОЕ ОБЩЕСТВО УЧАЩИХСЯ» МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ЛИЦЕЙ №8» 660062, г. Крупской, 10 В. Тел. 247-66-52, 247-66-40, Эл. Адрес: lyc8@mail.ru

Удивительные кривые линии Секция прикладной математики Выполнила: учащаяся 10 класса лицея № 8 г. Красноярска Мартыновских Анастасия Александровна Руководитель: учитель черчения Бекарева Елена Евгеньевна Красноярск 2011

Краткая аннотация. В работе указаны три способа задания кривых линий. Приведены примеры кривых линий. При написании работы применялись, в большинстве своем, теоретические методы исследования: изучение литературы, анализ и систематизация полученной информации, построение кривых.
Слайд 2

Краткая аннотация

В работе указаны три способа задания кривых линий. Приведены примеры кривых линий. При написании работы применялись, в большинстве своем, теоретические методы исследования: изучение литературы, анализ и систематизация полученной информации, построение кривых.

Актуальность. Кривые линии повсеместно встречаются в окружающем нас мире. В нашей повседневной жизни мы постоянно сталкиваемся с огромным количеством кривых линий, которые порой не замечаем. Если бы в мире не было кривых линий, то все предметы были бы угловатыми, квадратными. И вещи, имеющие мягкие
Слайд 3

Актуальность

Кривые линии повсеместно встречаются в окружающем нас мире. В нашей повседневной жизни мы постоянно сталкиваемся с огромным количеством кривых линий, которые порой не замечаем. Если бы в мире не было кривых линий, то все предметы были бы угловатыми, квадратными. И вещи, имеющие мягкие очертания, приятны для восприятия зрительными органами человека. Даже в природе количество n-угольных предметов сведено к минимуму.

Проблема. С помощью линий удаётся решать многие научные и инженерные задачи, но решение которых аналитическим путём часто приводит к использованию чрезвычайно громоздкого математического аппарата.
Слайд 4

Проблема

С помощью линий удаётся решать многие научные и инженерные задачи, но решение которых аналитическим путём часто приводит к использованию чрезвычайно громоздкого математического аппарата.

Исследованием кривых линий занимались: Блэз Паскаль Blaise Pascal (19.06.1623 – 19.08.1662) Один из самых знаменитых людей в истории человечества. Паскаль умер, когда ему было 39 лет, но, несмотря на столь короткую жизнь, вошел в историю как выдающийся математик, физик, философ и писатель. Его имене
Слайд 5

Исследованием кривых линий занимались:

Блэз Паскаль Blaise Pascal (19.06.1623 – 19.08.1662) Один из самых знаменитых людей в истории человечества. Паскаль умер, когда ему было 39 лет, но, несмотря на столь короткую жизнь, вошел в историю как выдающийся математик, физик, философ и писатель. Его именем названы единица давления (паскаль) и весьма популярный сегодня язык программирования.

Дезарг Жерар [1593, Лион, — 1662, там же (по др. данным — 1591—1661)], французский математик. Был военным инженером. Заложил основы проективной и начертательной геометрии. В своих исследованиях систематически применял перспективное изображение. Первым ввёл в геометрию Бесконечно удалённые элементы.
Слайд 6

Дезарг Жерар [1593, Лион, — 1662, там же (по др. данным — 1591—1661)], французский математик. Был военным инженером. Заложил основы проективной и начертательной геометрии. В своих исследованиях систематически применял перспективное изображение. Первым ввёл в геометрию Бесконечно удалённые элементы.

Цель работы. Изучить виды основных, наиболее известных кривых линий и их основные свойства. Научится строить различные кривые. Найти оптимальные способы построения кривых линий.
Слайд 7

Цель работы

Изучить виды основных, наиболее известных кривых линий и их основные свойства. Научится строить различные кривые. Найти оптимальные способы построения кривых линий.

Задачи: 1. Проанализировать литературу. 2. Просмотреть интернет ресурсы. 3. Определить способы. 4. Сравнить способы задания кривых. 5. Оценить.
Слайд 8

Задачи:

1. Проанализировать литературу. 2. Просмотреть интернет ресурсы. 3. Определить способы. 4. Сравнить способы задания кривых. 5. Оценить.

Способы задания кривых. Существует 3 способа задания кривых. · аналитический · графический · табличный
Слайд 9

Способы задания кривых

Существует 3 способа задания кривых. · аналитический · графический · табличный

Аналитический способ. Аналитический- кривая задана математическим уравнением. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим. Этот способ дает возможность по каждому численному значению аргумента
Слайд 10

Аналитический способ

Аналитический- кривая задана математическим уравнением. Чаще всего закон, устанавливающий связь между аргументом и функцией, задается посредством формул. Такой способ задания функции называется аналитическим. Этот способ дает возможность по каждому численному значению аргумента x найти соответствующее ему численное значение функции y точно или с некоторой точностью. Если зависимость между x и y задана формулой, разрешенной относительно y, т.е. имеет вид y = f(x), то говорят, что функция от x задана в явном виде. Если же значения x и y связаны некоторым уравнением вида F(x,y) = 0, т.е. формула не разрешена относительно y, что говорят, что функция y = f(x) задана неявно. Функция может быть определена разными формулами на разных участках области своего задания. Аналитический способ является самым распространенным способом задания функций. Компактность, лаконичность, возможность вычисления значения функции при произвольном значении аргумента из области определения, возможность применения к данной функции аппарата математического анализа — основные преимущества аналитического способа задания функции. К недостаткам можно отнести отсутствие наглядности, которое компенсируется возможностью построения графика и необходимость выполнения иногда очень громоздких вычислений.

Графический способ. Графический- кривая задана визуально на носителе графической информации. Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению. Графический способ задания функции не всегда дает возможность точн
Слайд 11

Графический способ

Графический- кривая задана визуально на носителе графической информации. Графический способ. Графиком функции y = f(x) называется множество всех точек плоскости, координаты которых удовлетворяют данному уравнению. Графический способ задания функции не всегда дает возможность точно определить численные значения аргумента. Однако он имеет большое преимущество перед другими способами - наглядность. В технике и физике часто пользуются графическим способом задания функции, причем график бывает единственно доступным для этого способом. Чтобы графическое задание функции было вполне корректным с математической точки зрения, необходимо указывать точную геометрическую конструкцию графика, которая, чаще всего, задается уравнением. Это приводит к следующему способу задания функции.

Табличный способ. Табличный- кривая задана координатами последовательного ряда точек. Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область оп
Слайд 12

Табличный способ

Табличный- кривая задана координатами последовательного ряда точек. Табличный способ. Довольно распространенный, заключается в задании таблицы отдельных значений аргумента и соответствующих им значений функции. Такой способ задания функции применяется в том случае, когда область определения функции является дискретным конечным множеством. При табличном способе задания функции можно приближенно вычислить не содержащиеся в таблице значения функции, соответствующие промежуточным значениям аргумента. Для этого используют способ интерполяции. Преимущества табличного способа задания функции состоят в том, что он дает возможность определить те или другие конкретные значения сразу, без дополнительных измерений или вычислений. Однако, в некоторых случаях таблица определяет функцию не полностью, а лишь для некоторых значений аргумента и не дает наглядного изображения характера изменения функции в зависимости от изменения аргумента.

Плоские кривые линии. Существуют ПЛОСКИЕ КРИВЫЕ ЛИНИИ Кривые линии, все точки которых принадлежат одной плоскости, называются плоскими. Порядок плоской алгебраической кривой линии определяется наибольшим числом точек её пересечения прямой линией. Любая прямая линия может пересекать алгебраическую кр
Слайд 13

Плоские кривые линии

Существуют ПЛОСКИЕ КРИВЫЕ ЛИНИИ Кривые линии, все точки которых принадлежат одной плоскости, называются плоскими. Порядок плоской алгебраической кривой линии определяется наибольшим числом точек её пересечения прямой линией. Любая прямая линия может пересекать алгебраическую кривую линию n-го порядка не более, чем в n точках. Рассмотрим несколько примеров алгебраической кривой линии:

Парабола. Парабола – кривая второго порядка, прямая пересекает ее в двух точках. При этом парабола может быть определена как: -множество точек М(A,B,C,...) плоскости, расстояние которых до определенной точки F этой плоскости (фокуса параболы) равно расстоянию до определенной прямой DD1 - директрисы
Слайд 14

Парабола

Парабола – кривая второго порядка, прямая пересекает ее в двух точках. При этом парабола может быть определена как: -множество точек М(A,B,C,...) плоскости, расстояние которых до определенной точки F этой плоскости (фокуса параболы) равно расстоянию до определенной прямой DD1 - директрисы параболы; -линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и параллельная какой либо касательной плоскости этого конуса; -в прямоугольной системе координат 0ху с началом в вершине параболы и осью 0х направленной по оси параболы уравнение параболы имеет так называемый канонический вид

Гипербола. . Гипербола : - множество точек М(A,B,C,...) плоскости, разность (по абсолютной величине) расстояний которых до двух определенных точек F и F1 этой плоскости (фокусов гиперболы) величина постоянная: FM - F1M=2а
Слайд 15

Гипербола

. Гипербола : - множество точек М(A,B,C,...) плоскости, разность (по абсолютной величине) расстояний которых до двух определенных точек F и F1 этой плоскости (фокусов гиперболы) величина постоянная: FM - F1M=2а<2с Середина 0 отрезка FF1 (фокусного расстояния) называется центром гиперболы; - линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающая обе его полости; - в прямоугольной системе координат 0ху с началом в центре гиперболы, на оси 0х которой лежат фокусы гиперболы уравнение гиперболы имеет так называемый канонический вид где а и b длины полуосей гиперболы.

Эллипс. . Эллипс : - множество точек М(xy) плоскости, сумма расстояний МF1 и МF2 которых до двух определенных точек F1 и F2 (фокусов эллипса) постоянна МF1+МF2=2а. Середина 0 отрезка F1F2 (фокусного расстояния) называется центром эллипса; - линия пересечения прямого кругового конуса плоскостью, не п
Слайд 16

Эллипс

. Эллипс : - множество точек М(xy) плоскости, сумма расстояний МF1 и МF2 которых до двух определенных точек F1 и F2 (фокусов эллипса) постоянна МF1+МF2=2а. Середина 0 отрезка F1F2 (фокусного расстояния) называется центром эллипса; - линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающей все прямолинейные образующие одной полости этого конуса; - в прямоугольной системе координат 0ху с началом в центре эллипса, на оси 0х которой лежат фокусы эллипса уравнение эллипса имеет следующий вид: где а и b - длины большой и малой полуосей эллипса. При а=b фокусы F1 и F2 совпадают и указанное уравнение определяет окружность, которая рассматривается как частный случай эллипса.

Кривые конических сечений. Все, рассмотренные плоские кривые линии можно получить как линии пересечения поверхности прямого кругового конуса с плоскостями, различно расположенными по отношению к оси конуса. Поэтому эти кривые называют кривыми конических сечений. Трансцендентные кривые в отличие от а
Слайд 17

Кривые конических сечений

Все, рассмотренные плоские кривые линии можно получить как линии пересечения поверхности прямого кругового конуса с плоскостями, различно расположенными по отношению к оси конуса. Поэтому эти кривые называют кривыми конических сечений. Трансцендентные кривые в отличие от алгебраических могут иметь бесконечное количество точек пересечения с прямой, точек перегиба, вершин и т.п.

Синусоида. Синусоида - график функции у=sin x, непрерывная кривая линия с периодом Т=2п. Наряду с этим у трансцендентных кривых могут быть характерные точки, которых не существует у алгебраических кривых: точки прекращения, угловые точки (точки излома), асимптотические точки. Простейшими примерами т
Слайд 18

Синусоида

Синусоида - график функции у=sin x, непрерывная кривая линия с периодом Т=2п. Наряду с этим у трансцендентных кривых могут быть характерные точки, которых не существует у алгебраических кривых: точки прекращения, угловые точки (точки излома), асимптотические точки. Простейшими примерами трансцендентных кривых служат графики функций логарифмической, показательной тригонометрической, а также все спирали, циклоиды и т.п.

Рассмотрим несколько примеров графической кривой линии: Эллипс. Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно неско
Слайд 19

Рассмотрим несколько примеров графической кривой линии: Эллипс

Эллипс представляет собой замкнутую плоскую кривую второго порядка. Она характеризуется тем, что сумма расстояний от любой ее точки до двух точек фокусов есть величина постоянная, равная большей оси эллипса. Построить эллипс можно несколькими способами. Например, можно построить эллипс по его большой АВ и малой CD осям (рис. 37, а). На осях эллипса как на диаметрах строят две окружности, которые можно разделить радиусами на несколько частей. Через точки деления большой окружности проводят прямые, параллельные малой оси эллипса, а через точки деления малой окружности – прямые, параллельные большой оси эллипса. Точки пересечения этих прямых и являются точками эллипса.

Приемы построения параболы и гиперболы:
Слайд 20

Приемы построения параболы и гиперболы:

Циклоида и синусоида:
Слайд 21

Циклоида и синусоида:

Эвольвента окружности:
Слайд 22

Эвольвента окружности:

Выводы. Каждый из предложенных способов имеет свои преимущества и недостатки, поэтому выбор способа построения кривых линий зависит от конкретной поставленной задачи. Изучение кривых второго порядка дало толчок развитию теорий алгебраических и механических кривых: лемнискаты, конхоиды, циклоиды, эпи
Слайд 23

Выводы

Каждый из предложенных способов имеет свои преимущества и недостатки, поэтому выбор способа построения кривых линий зависит от конкретной поставленной задачи. Изучение кривых второго порядка дало толчок развитию теорий алгебраических и механических кривых: лемнискаты, конхоиды, циклоиды, эпициклоиды, гипоциклоиды, кардиоиды и т.д. Изучение этих кривых, их свойств могут вылиться в интересные ученические исследовательские работы.

Литература. I.И.А. Воротников «Занимательное черчение», Москва, «Просвещение», 1990 год. II. Чекмарев А. А. Начертательная геометрия и черчение: Учеб. для студентов вузов. — М.: Владос, 1999. III. http://www.propro.ru/graphbook/Graphbook/book/001/032.htm
Слайд 24

Литература

I.И.А. Воротников «Занимательное черчение», Москва, «Просвещение», 1990 год. II. Чекмарев А. А. Начертательная геометрия и черчение: Учеб. для студентов вузов. — М.: Владос, 1999. III. http://www.propro.ru/graphbook/Graphbook/book/001/032.htm

Список похожих презентаций

Астрономические координаты. Секция: математики

Астрономические координаты. Секция: математики

Целью моей работы является нахождение и анализ необходимой информации по данной теме. Задачей является детальное рассмотрение сфер применения на практике ...
Введение вероятностно-статистической линии в школьный курс математики

Введение вероятностно-статистической линии в школьный курс математики

Обязательный минимум содержания образовательных программ. Элементы логики, комбинаторики, статистики и теории вероятностей. Доказательство. Определения, ...
Помощь математики в ремонте

Помощь математики в ремонте

План моей комнаты. Измерения для расчетов. Пол (закупка ламината). Размер доски ламината: 1285 x 210 x 12 мм (6 досок в упаковке) Расчеты: - найдем ...
Открытый урок математики в 5 классе

Открытый урок математики в 5 классе

Ребята, помогите ответить на вопросы. Как помочь трем поросятам разделить яблоко поровну? Прочитайте дроби 5 6 7 8. 1. Как называется число 5 в записи. ...
Неделя математики как способ активизации познавательной деятельности учащихся

Неделя математики как способ активизации познавательной деятельности учащихся

развитие личностных качеств обучающихся и активизация их мыслительной деятельности; поддержка и развитие творческих способностей и интереса к предмету; ...
Методическая разработка интегрированного урока математики и информатики для учащихся 6 класса "Его величество ПИ"

Методическая разработка интегрированного урока математики и информатики для учащихся 6 класса "Его величество ПИ"

«СУНДУЧОК ЗНАНИЙ». О С В А. ОА – радиус окружности. r d. ВС – диаметр окружности. ХРАНЕНИЕ ПЕРЕДАЧА ОБРАБОТКА ОБЩЕНИЕ. «СЧЁТНАЯ МАШИНА». «ТВОРЧЕСКАЯ ...
Линия уравнений и неравенств школьного курса математики

Линия уравнений и неравенств школьного курса математики

План. Общие подходы к изучению уравнений и неравенств Формирование представлений об общих методах уравнений Метод уравнений и неравенств в обучении ...
Решение уравнений «В мире звезд» Урок математики в 6 классе

Решение уравнений «В мире звезд» Урок математики в 6 классе

1 5 3 6 7 4. Задание № 1 Какое равенство называется уравнение? Какое число называться корнем уравнения? Что значит решить уравнение? Прочитать правило ...
Путешествие в страну Занимательной математики

Путешествие в страну Занимательной математики

Цели урока:. Закрепим знания сложения и вычитания чисел в пределах 10. Закрепим умения сравнивать числа, решать задачи. Сосчитай-ка. 2 6 7 9 4. Загадай-ка. ...
Ассоциация, как помощник, при изучении математики

Ассоциация, как помощник, при изучении математики

Ассоциация- это мысленная связь между двумя образами. Чем многообразнее и многочисленнее ассоциации, тем прочнее они закрепляются в памяти. Странные, ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
Активизация мыслительной деятельности на уроках математики

Активизация мыслительной деятельности на уроках математики

Активные формы урока. Урок-лекция. Урок-консультация. Урок-практикум Урок-семинар Урок-зачёт. урок-лекция. Зачёт №2 по геометрии в 11 классе 1.Объясните, ...
Авторалли по городам математики

Авторалли по городам математики

Цель: Закрепить навык выполнения действий, возведения чисел в квадрат и куб, закрепить формулы пути и площади. Расширение кругозора учащихся, развитие ...
Приемы рефлексии на уроках математики

Приемы рефлексии на уроках математики

Рефлексия – размышление человека, направленное на анализ самого себя (самоанализ) – собственных состояний, своих поступков и прошедших событий. Определение. ...
Проблемные ситуации на уроках математики

Проблемные ситуации на уроках математики

1.Через умышленно допущенные учителем ошибки. 2.Через использование занимательных заданий. 3.Через решение задач, связанных с жизнью. 4.Через выполнение ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Развитие математики на Руси

Развитие математики на Руси

Алфавитное обозначение чисел кириллицей. 1136г.- «Кирика диакона и доместика Новгородского Антониева монастыря». Денежные меры. рубль = 2 полтинам ...
Бинарный урок математики и природоведения по теме "Итоговое повторение"

Бинарный урок математики и природоведения по теме "Итоговое повторение"

Итоговое повторение. Ну-ка, проверь дружок, Ты готов начать урок? Всё ль на месте, Всё ль в порядке, Ручка, книжка и тетрадка? Все ли правильно сидят? ...
Связь музыки и математики

Связь музыки и математики

Настоящая наука и настоящая музыка требует однородного мыслительного процесса. А Энштейн. Существует распространенное мнение, что Математика и Музыка ...

Конспекты

Школьные экологические проблемы на уроке математики

Школьные экологические проблемы на уроке математики

Интегрированный урок (математика + экология) в 5-м классе по теме "Школьные экологические проблемы на уроке математики". Цели:. математика:. ...
Урок математики для 4 класса

Урок математики для 4 класса

«Хочется, чтобы дети были. путешественниками, открывателями. и творцами в этом мире». ( В.А. Сухомлинский). Проблема познавательного интереса ...
Формирование познавательных процессов на уроках математики

Формирование познавательных процессов на уроках математики

Кировское областное государственное общеобразовательное автономное учреждение средняя общеобразовательная школа г. Лузы. . ...
Точка. Прямая и кривая линии

Точка. Прямая и кривая линии

УМК «Гармония» 1 класс. Тема:. «Точка. Прямая и кривая линии. ». Автор: Хохлова Ирина Борисовна, учитель. . начальных классов. МБОУ ...
Урок математики 3 класс: Что узнали. Чему научились. Как до 1000 докатились

Урок математики 3 класс: Что узнали. Чему научились. Как до 1000 докатились

Хочу с проектом урока познакомить вас. Урок математики - 3 класс. Направление – ФГОС. . . Чему научатся и могут научиться, вот в чем вопрос. ...
Самые важные понятия математики

Самые важные понятия математики

Интегрированный урок (математика + история). в 5 классе по. теме «Самые важные понятия математики». Л.Н. Головина, учитель математики. Заречненской ...
Страна математики

Страна математики

Конспект итогового занятия в второй младшей группе. . . . Хасимова Чулпан Максумзяновна. Воспитатель МБДОУ № 76. . Республики Татарстан, ...
Знатоки математики

Знатоки математики

Математическая игра. . «Знатоки математики». 10 класс. Подгорнова Людмила Игнатьевна. МАОУ СОШ №38 г.Златоуст. Учитель математики. ...
Из истории математики

Из истории математики

Урок математики в 5 классе. «Из истории математики». . . При проведении урока необходимо иметь карту, на которой обозначены Греция, Египет Россия, ...
Великие математики России. С.В. Ковалевская

Великие математики России. С.В. Ковалевская

План-конспект внеклассного мероприятия. «Великие математики России. С.В. Ковалевская». . ФИО. . Ракитина Эльвира Альбертовна. . ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:12 августа 2019
Категория:Математика
Содержит:24 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации