- Задачи на параллелограмм

Презентация "Задачи на параллелограмм" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30

Презентацию на тему "Задачи на параллелограмм" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 30 слайд(ов).

Слайды презентации

Геометрия. Выполнил ученик 10 класса «Б» Средней школы № 1143 Клоков Антон. 5klass.net
Слайд 1

Геометрия.

Выполнил ученик 10 класса «Б» Средней школы № 1143 Клоков Антон.

5klass.net

Тема: параллелограмм.
Слайд 2

Тема: параллелограмм.

Определение: Определение: параллелограмм - четырехугольник, у которого противоположные стороны попарно параллельны.
Слайд 3

Определение:

Определение: параллелограмм - четырехугольник, у которого противоположные стороны попарно параллельны.

Свойства параллелограмма:
Слайд 4

Свойства параллелограмма:

Диагонали параллелограмма пересекаются и точкой пресечения делятся пополам. Параллелограмм – выпуклый четырехугольник. У параллелограмма противолежащие стороны равны, противолежащие углы равны.
Слайд 5

Диагонали параллелограмма пересекаются и точкой пресечения делятся пополам. Параллелограмм – выпуклый четырехугольник. У параллелограмма противолежащие стороны равны, противолежащие углы равны.

Признаки параллелограмма: Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник – параллелограмм. Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм. Если у четырехугольника противолежащие
Слайд 6

Признаки параллелограмма:

Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то такой четырехугольник – параллелограмм. Если у четырехугольника пара противоположных сторон параллельны и равны, то четырехугольник – параллелограмм. Если у четырехугольника противолежащие стороны попарно равны, такой четырехугольник – параллелограмм. Если в четырехугольнике противолежащие углы равны, такой четырехугольник – параллелограмм.

Высота параллелограмма. Высотой параллелограмма, проведенной к данной его стороне, называется перпендикуляр, опущенный из произвольной точки противолежащей стороны к прямой, содержащей данную сторону. BE – высота.
Слайд 7

Высота параллелограмма

Высотой параллелограмма, проведенной к данной его стороне, называется перпендикуляр, опущенный из произвольной точки противолежащей стороны к прямой, содержащей данную сторону.

BE – высота.

Площадь параллелограмма: Площадь параллелограмма равна произведению его стороны на проведенную к ней высоту: S = ah. a h
Слайд 8

Площадь параллелограмма:

Площадь параллелограмма равна произведению его стороны на проведенную к ней высоту: S = ah.

a h

Задачи. Часть «A».
Слайд 9

Задачи. Часть «A».

Задача №1 В параллелограмме ABCD диагональ BD равна 12 см, О — точка пересечения диагоналей параллелограмма. Чему равен отрезок DO (смотрите рисунок)?
Слайд 10

Задача №1 В параллелограмме ABCD диагональ BD равна 12 см, О — точка пересечения диагоналей параллелограмма. Чему равен отрезок DO (смотрите рисунок)?

Решение: Диагональ BD в параллелограмме ABCD точкой O делится пополам (свойство параллелограмма). Значит BO=OD=6 . Ответ: DO=6. Задача №2. В параллелограмме сумма двух углов равна 132°. Найдите градусную меру каждого из этих углов.
Слайд 11

Решение:

Диагональ BD в параллелограмме ABCD точкой O делится пополам (свойство параллелограмма). Значит BO=OD=6 . Ответ: DO=6. Задача №2. В параллелограмме сумма двух углов равна 132°. Найдите градусную меру каждого из этих углов.

Эти углы не могут быть прилежащими к одной стороне, так как в этом случае бы их сумма была бы равна 180°: Значит, эти углы противолежащие. По свойству противолежащих углов параллелограмма они равны и каждый из них равен 66°. Ответ: 66°. Задача №3 Стороны параллелограмма 4 см и 6 см. Меньшая его высо
Слайд 12

Эти углы не могут быть прилежащими к одной стороне, так как в этом случае бы их сумма была бы равна 180°: Значит, эти углы противолежащие. По свойству противолежащих углов параллелограмма они равны и каждый из них равен 66°. Ответ: 66°. Задача №3 Стороны параллелограмма 4 см и 6 см. Меньшая его высота равна 3 см. Вычислите второю высоту параллелограмма.

Площадь параллелограмма равна и . Так как S=aha= ah b , то меньшая высота соответствует большей стороне, значит меньшая высота опущена на сторону длиной 6 см. Значит S=18 см2 , а искомая высота равна и равна 4,5 см.
Слайд 13

Площадь параллелограмма равна и . Так как S=aha= ah b , то меньшая высота соответствует большей стороне, значит меньшая высота опущена на сторону длиной 6 см. Значит S=18 см2 , а искомая высота равна и равна 4,5 см.

Задача№4. Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 см и 14 см. Решение: Пусть ABCD - данный параллелограмм, AK - указанная биссектриса, BK=7 , KC=14. Поскольку углы BKA, KAD, BAK равны , то треугольник ABK - равно- бедренный. П
Слайд 14

Задача№4

Найдите периметр параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки 7 см и 14 см. Решение: Пусть ABCD - данный параллелограмм, AK - указанная биссектриса, BK=7 , KC=14. Поскольку углы BKA, KAD, BAK равны , то треугольник ABK - равно- бедренный. Поэтому AB=BK=7, BC=BK+KC=21. Значит периметр равен 56.

Часть " B " !
Слайд 15

Часть " B " !

Задача № 1. Даны две окружности с общим центром в точке О, АС и BD — диаметры этих окружностей. Докажите, что четырехугольник ABCD — параллелограмм.
Слайд 16

Задача № 1

Даны две окружности с общим центром в точке О, АС и BD — диаметры этих окружностей. Докажите, что четырехугольник ABCD — параллелограмм.

Доказательство. Так как О — центр концентрических окружностей, то диаметры АС и CD пересекаются и точкой пересечения делятся пополам, значит, ABCD — параллелограмм.
Слайд 17

Доказательство. Так как О — центр концентрических окружностей, то диаметры АС и CD пересекаются и точкой пересечения делятся пополам, значит, ABCD — параллелограмм.

Задача №2. Точки K и L - середины сторон AD и BC параллелограмма ABCD. Докажите, что прямые AL и CK делят диагональ BD на три равные части. A B C D k L N M
Слайд 18

Задача №2

Точки K и L - середины сторон AD и BC параллелограмма ABCD. Докажите, что прямые AL и CK делят диагональ BD на три равные части.

A B C D k L N M

KD = AK, CL = BL. Так как ABCD - параллелограмм, то AD || BC, следовательно, AK || CL, причем AK = CL, так как AD = BC. Тогда по признаку параллелограмма имеем, что ALCK - параллелограмм. Следовательно, KM || AN и NL|| CM. Причем KM проходит через середину AD , а NL - через середину BC. Значит, KM -
Слайд 19

KD = AK, CL = BL. Так как ABCD - параллелограмм, то AD || BC, следовательно, AK || CL, причем AK = CL, так как AD = BC. Тогда по признаку параллелограмма имеем, что ALCK - параллелограмм. Следовательно, KM || AN и NL|| CM. Причем KM проходит через середину AD , а NL - через середину BC. Значит, KM - средняя линяя тр. ADN, а NL - cредняя линяя тр. BCM. Значит, DM = MN и BN = MN или DM = MN = BN.

Часть " C " !
Слайд 20

Часть " C " !

Задача №1. Дан параллелограмм ABCD с острым углом при вершине A . На лучах AB и CB отмечены точки H и K соответственно так, что CH=BC и AK=AB . а) Докажите, что DH=DK . б) Докажите, что треугольники DKH и ABK подобны.
Слайд 21

Задача №1

Дан параллелограмм ABCD с острым углом при вершине A . На лучах AB и CB отмечены точки H и K соответственно так, что CH=BC и AK=AB . а) Докажите, что DH=DK . б) Докажите, что треугольники DKH и ABK подобны.

Из равенства треугольников HCD и DAK (по двум сторонам и углу между ними) следует равенство отрезков DH и DK . Из равенства углов KAH и HCK следует, что точки A,C,H,K - лежат на одной окружности, а так как угол CKA и угол ADC в сумме 180 градусов , то на этой окружности лежит и точка D . Следователь
Слайд 22

Из равенства треугольников HCD и DAK (по двум сторонам и углу между ними) следует равенство отрезков DH и DK . Из равенства углов KAH и HCK следует, что точки A,C,H,K - лежат на одной окружности, а так как угол CKA и угол ADC в сумме 180 градусов , то на этой окружности лежит и точка D . Следовательно, углы KAB и KDH при вершинах A и D равнобедренных треугольников ABK и DKH равны. Поэтому треугольники подобны.

Задача №3. В параллелограмме ABCD диагональ AC больше диагонали BD . Точка M на диагонали AC такова, что около четырехугольника BCDM можно описать окружность. Докажите, что BD - общая касательная окружностей, описанных около треугольников ABM и ADM .
Слайд 23

Задача №3

В параллелограмме ABCD диагональ AC больше диагонали BD . Точка M на диагонали AC такова, что около четырехугольника BCDM можно описать окружность. Докажите, что BD - общая касательная окружностей, описанных около треугольников ABM и ADM .

Поскольку углы MBD, MCD, BAM равны, а точки A и D лежат по разные стороны от прямой BM , то BD - касательная к окружности, описанной около треугольника ABM . Задача № 4 В параллелограмме ABCD с углом A , равным 60 градусов , проведена биссектриса угла B , пересекающая сторону CD в точке E . В треуго
Слайд 24

Поскольку углы MBD, MCD, BAM равны, а точки A и D лежат по разные стороны от прямой BM , то BD - касательная к окружности, описанной около треугольника ABM . Задача № 4 В параллелограмме ABCD с углом A , равным 60 градусов , проведена биссектриса угла B , пересекающая сторону CD в точке E . В треугольник ECB вписана окружность радиуса R . Другая окружность вписана в трапецию ABED . Найдите расстояние между центрами этих окружностей.

Пусть O1 и O2 - центры окружностей, вписанных в треугольник BCE и в ABED трапецию . Треугольник O1EO2 - прямоугольный, т. к. угол O1EO2 - прямой (угол между биссектрисами смежных углов). Треугольник BCE - равносторонний (углы BEC, ABE, EBC равны между собой и равны 60 градусов ), O1E=2R , его высота
Слайд 25

Пусть O1 и O2 - центры окружностей, вписанных в треугольник BCE и в ABED трапецию . Треугольник O1EO2 - прямоугольный, т. к. угол O1EO2 - прямой (угол между биссектрисами смежных углов). Треугольник BCE - равносторонний (углы BEC, ABE, EBC равны между собой и равны 60 градусов ), O1E=2R , его высота EM равна 3R . Поэтому O2B=EM=3R . Тогда Следовательно, Ответ:

Задача №5. В параллелограмме лежат две окружности, касающиеся друг друга и трех сторон параллелограмма каждая. Радиус одной из окружностей равен 1. Известно, что один из отрезков стороны параллелограмма от вершины до точки касания равен . Найдите площадь параллелограмма.
Слайд 26

Задача №5

В параллелограмме лежат две окружности, касающиеся друг друга и трех сторон параллелограмма каждая. Радиус одной из окружностей равен 1. Известно, что один из отрезков стороны параллелограмма от вершины до точки касания равен . Найдите площадь параллелограмма.

Окружности равны. Расстояние между точками их касания с большей стороной параллелограмма равно сумме их радиусов, т. е. 2. Меньшая сторона параллелограмма видна из центра касающейся ее окружности под прямым углом. Один из отрезков этой стороны от вершины до точки касания равен , значит второй равен
Слайд 27

Окружности равны. Расстояние между точками их касания с большей стороной параллелограмма равно сумме их радиусов, т. е. 2. Меньшая сторона параллелограмма видна из центра касающейся ее окружности под прямым углом. Один из отрезков этой стороны от вершины до точки касания равен , значит второй равен . Тогда большая сторона равна Следовательно, площадь параллелограмма равна 2( ).

Задача №6: В параллелограмме ABCD острый угол равен . Окружность радиуса r проходит через вершины A,B,C и пересекает прямые AD и CD в точках M и N . Найдите площадь треугольника BMN .
Слайд 28

Задача №6:

В параллелограмме ABCD острый угол равен . Окружность радиуса r проходит через вершины A,B,C и пересекает прямые AD и CD в точках M и N . Найдите площадь треугольника BMN .

Задачи на параллелограмм Слайд: 29
Слайд 29
Работу выполнил Клоков Антон.
Слайд 30

Работу выполнил Клоков Антон.

Список похожих презентаций

«Моя математика» - задачи на нахождение целого или части

«Моя математика» - задачи на нахождение целого или части

МАТЕМАТИКА 1 3 4 5 7 6 8 9 0. Работа с числовым рядом. http://www.bajena.com/ru/kids/mathematics/sum-mathematics.php. 1. Прочитайте текст справа и ...
«Задачи на проценты»

«Задачи на проценты»

Тема урока: Проценты. Тип урока: урок обобщения и систематизации знаний. Цели урока: Образовательные: Обобщение и систематизация знаний учащихся о ...
Арифметика Л.Ф. Магницкого. Задачи на сплавы и смеси

Арифметика Л.Ф. Магницкого. Задачи на сплавы и смеси

Цели моей работы. Познакомиться с биографией Леонтия Филипповича Магницкого Научиться решать задачи на сплавы, находить процентное содержание веществ ...
Влияние коэффициентов на расположение параболы

Влияние коэффициентов на расположение параболы

Цель:. Исследовать зависимость свойств параболы от ее коэффициентов. Задачи:. Выяснить закономерность расположения вершин параболы. Рассмотреть некоторые ...
Влияние "главных чисел" на характер человека

Влияние "главных чисел" на характер человека

Эпиграф. Мысль выражать все числа знаками настолько проста, что именно из – за этой простоты сложно осознать, сколь она удивительна. Пьер Симон Лаплас. ...
Використання ІКТ на уроках математики.

Використання ІКТ на уроках математики.

Сучасне суспільство нерозривно пов'язане з процесом інформатизації. Головне завдання освіти – формування інформаційної компетентності ( формування ...
Взаимное расположение прямых на плоскости

Взаимное расположение прямых на плоскости

Цели:. Обобщить знания о прямых на плоскости из алгебры и геометрии 7 класса. Выяснить взаимное расположение прямых, заданных уравнением y=kx+b в ...
Векторы на плоскости

Векторы на плоскости

Аналитическая геометрия. Алгебраические поверхности и линии на плоскости первого порядка. Опр. Геометрическое место точек в пространстве (на плоскости) ...
Бумажные складные модели и их использование на уроках геометрии в 10 классе

Бумажные складные модели и их использование на уроках геометрии в 10 классе

Модель 1 – «Две пересекающиеся плоскости». Согнутый пополам лист бумаги служит моделью двух пересекающихся плоскостей. Линия сгиба – прямая их пересечения. ...
Астрономия на координатной плоскости

Астрономия на координатной плоскости

Цели урока:. Закрепить полученные знания и навыки. Проявить творчество при изучении данного раздела. Избежать трудностей при изучении темы «Функция» ...
Авария на промышленном объекте

Авария на промышленном объекте

Цели урока:. Повторить материал по темам “ Площади криволинейных трапеций”, “Решение показательных уравнений”, выявить пробелы в знаниях и постараться ...
3 вида разложение многочлена на множители

3 вида разложение многочлена на множители

1 вид вынесение общего множителя за скобки. Что значит разложить многочлен на множители? Разложить многочлен на множители — это значит представить ...
«Старая сказка на новый лад»

«Старая сказка на новый лад»

3 268 :2 12 396:3 256 130:5 1634 51226. Полетели стрелы в разные стороны. Упала стрела царевича на царский двор. 1634 м. Стрела второго царевича улетела ...
«Задания на проценты»

«Задания на проценты»

Пусть каждый день и каждый час Вам новое добудет. Пусть добрым будет ум у Вас, А сердце умным будет. (С. Маршак). Цели урока:. повторить содержание ...
"Разрезание геометрических фигур на части"

"Разрезание геометрических фигур на части"

ЗАДАЧИ НА РАЗРЕЗАНИЯ. Теорема Бойяи-Гервина гласит: любой многоугольник можно так разрезать на части, что из этих частей удастся сложить квадрат. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Автоматизация труда учителя на примере решения систем алгебраических уравнений с использованием программного пакета MATHCAD

Ознакомить учителей математики с возможностями продукта MathCAD Обеспечить автоматизацию работы учителей с использованием MathCAD Рассмотреть решение ...
Аксиомы расположения точек на прямой и плоскости

Аксиомы расположения точек на прямой и плоскости

Выполните действия и сделайте записи:. 1. Изобразите точку С, лежащую на прямой а. 2. Изобразите точку D, не лежащую на этой прямой. 3. Проведите ...
Башни Кремля. Задачи по математике

Башни Кремля. Задачи по математике

Башни Кремля. Спасская башня считается самой красивой и стройной башней. Построена в 1491 году под руководством архитектора Пьетро Антонио Солари ...
Активизация мыслительной деятельности на уроках математики

Активизация мыслительной деятельности на уроках математики

Активные формы урока. Урок-лекция. Урок-консультация. Урок-практикум Урок-семинар Урок-зачёт. урок-лекция. Зачёт №2 по геометрии в 11 классе 1.Объясните, ...

Конспекты

Две основные задачи на дроби

Две основные задачи на дроби

. Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа № 8». Методическая разработка урока математики . ...
Действия с обыкновенными дробями. Основные задачи на дроби

Действия с обыкновенными дробями. Основные задачи на дроби

ГБС(К)ОУ ШИ. I. -. II. вида г. Тихорецка Краснодарского края. Урок – КВН. в 7 классе по теме:. «Действия с обыкновенными дробями. Основные ...
Алгоритм решения задачи на нахождение целого и частей

Алгоритм решения задачи на нахождение целого и частей

. Тимошенкова. Ирина Викторовна. Учитель начальных классов. МБ НОУ «Гимназия № 70». Г. Новокузнецк. Алгоритм. решения задачи. ...
Деление многозначного числа на однозначное

Деление многозначного числа на однозначное

Урок по математике по теме. . «Деление многозначного числа на однозначное». Учитель начальных классов. . Калаева Светлана Сосланбековна. ...
Деление меньшего числа на большее

Деление меньшего числа на большее

. Автор материала:. Федорова Галина Алексеевна. Место работы:. МАОУ лицей №5, Свердловская область город Камышлов. Должность:. учитель начальных ...
Деление как арифметическое действие. Деление на однозначное число

Деление как арифметическое действие. Деление на однозначное число

Автор: Дровосекова Ольга Афанасьевна. Тема разработки: Интегрированный урок математики и английского языка с использованием ИКТ «Деление как арифметическое ...
Деление и умножение на однозначное число. Решение задач с использованием экологических понятий и терминов

Деление и умножение на однозначное число. Решение задач с использованием экологических понятий и терминов

Полякова Елена Александровна. учитель начальных классов. НОУ «Школа – интернат №8 ОАО «РЖД». УРОК . МАТЕМАТИКИ. (3. класс). Тема. : «. ...
Деление десятичных дробей на натуральные числа

Деление десятичных дробей на натуральные числа

Урок по теме. . «Деление десятичных дробей на натуральные числа». . Учитель математики ВКК. МБОУ БГО СОШ №4. Конева Надежда Александровна. ...
Деление десятичной дроби на натуральное число

Деление десятичной дроби на натуральное число

Тема: Деление десятичной дроби на натуральное число. Цели. :. -обучающая: закрепление навыков деления десятичной дроби на натуральное число;. ...
Больше на некоторое число

Больше на некоторое число

Тема:. Больше на некоторое число. Тип урока:. урок изучения нового материала и первичного закрепления. Цель:. познакомить учащихся с возможностью ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:7 июня 2019
Категория:Математика
Содержит:30 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации