- Построение гиперкуба

Презентация "Построение гиперкуба" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12

Презентацию на тему "Построение гиперкуба" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 12 слайд(ов).

Слайды презентации

Можно ли наглядно представить себе четырехмерную фигуру? Построение гиперкуба. Герман Гельмгольц Жюль Анри Пуанкаре
Слайд 1

Можно ли наглядно представить себе четырехмерную фигуру? Построение гиперкуба.

Герман Гельмгольц Жюль Анри Пуанкаре

Знаменитый немецкий физик и физиолог Гельмгольц считал, что человек способен видеть четырехмерную фигуру. Необходимо лишь снабдить мозг надлежащими «входными данными». К сожалению, мы обречены на вечное существование в трехмерном пространстве: с самого своего рождения мы к нему настолько привыкли, д
Слайд 2

Знаменитый немецкий физик и физиолог Гельмгольц считал, что человек способен видеть четырехмерную фигуру. Необходимо лишь снабдить мозг надлежащими «входными данными». К сожалению, мы обречены на вечное существование в трехмерном пространстве: с самого своего рождения мы к нему настолько привыкли, да и нет никаких научных доказательств того, что четырехмерное пространство действительно существует. Необходимо быть гением, чтобы представить себе четырехмерный гиперкуб – аналог куба трехмерного. Гений же – 90 процентов трудолюбия. Развить в себе способность видеть тессеракт (это другое название гиперкуба) можно при соответствующей тренировке, как считал Анри Пуанкаре: «Человеку, который посвятил бы этой задаче всю жизнь, вероятно, удалось бы мысленно представить себе четвертое измерение». Говард Хинтон, американский математик, известный за свою эксцентричность, разработал особую систему, позволяющую складывать из разноцветных кубиков разные модели сечения тессеракта. Он полагал, что человек, достаточно долго «поигравший» в его «кубики», обретет интуитивное представление о четырехмерном пространстве. «Я не могу утверждать этого со всей определенностью, -- писал Хинтон, -- ибо мне не хотелось бы быть причиной напрасной траты времени другими людьми в том случаем, если я ошибаюсь (что отнюдь не исключено)» Заметим, что Хинтон считал, что ему «удалось развить зачатки четырехмерной интуиции». Разноцветные кубики слишком сложны, на объяснение их устройства, ушло бы много времени, тем более система изложена в книге Хинтона «Новая эра мышления». Попытаемся пойти более простым путем: изучим основные свойства тессеракта.

«Построение» гиперкуба. Возьмем точку и сдвинем ее вдоль оси x на единичное расстояние. Подобную операцию в быту приходится часто выполнять: мы берем карандаш, ставим в определенную точку и проводим линию вдоль линейки (к). Следующее действие совершить сложнее: сдвинем этот отрезок на единичное расс
Слайд 3

«Построение» гиперкуба. Возьмем точку и сдвинем ее вдоль оси x на единичное расстояние. Подобную операцию в быту приходится часто выполнять: мы берем карандаш, ставим в определенную точку и проводим линию вдоль линейки (к). Следующее действие совершить сложнее: сдвинем этот отрезок на единичное расстояние перпендикулярно прямой, на которой лежит отрезок, то есть, по оси y. Отрезок замерит единичный квадрат (к). По аналогии теперь легко получить единичный куб – «поднимем» квадрат перпендикулярно x и y. Важно заметить, что если бы пространство было двумерным, эту операцию невозможно было бы совершить, например, на листе бумаги: третью прямую нельзя провести. Это досадное для нас ограничение, возможно, с развитием голографических технологий, удастся обойти, но пока у нас есть только бумага, на которой мы рисуем второй квадрат и соединяем его линиями сдвига с первым: получается изображение куба (к). Мы подошли к самому интересному: у нас есть три оси, по которым мы сдвигали фигуры: x, y и z. Сдвигаем теперь наш куб перпендикулярно всем этим осям. Невероятно? Разумеется, но вспомним, что мы не могли сдвинуть квадрат на листе бумаги вверх, поэтому математического ограничения и на это построение нет. Введем новую ось, w, построенную перпендикулярно всем трем (к). Ничего, ничего, вспомним «воображаемую» геометрию Лобачевского, и поймем, что логика в наших действиях не отсутствует. Наоборот, мы получили четыре координатных оси, и можем применять к ним приемы аналитической геометрии, вводя точки четырехмерного пространства четырьмя координатами: A (1,2,3,1).(к)

Построение тессеракта
Слайд 4

Построение тессеракта

Удивительные свойства четырехмерной фигуры. С чего мы начали построение? С обычной точки. Она была одна-единственная. В отрезке, полученном сдвигом, два конца. Эти же два конца при сдвиге в квадрат дают нам еще две точки: вершины квадрата. В общем, очевидно: при сдвиге количество вершины удваивается
Слайд 5

Удивительные свойства четырехмерной фигуры. С чего мы начали построение? С обычной точки. Она была одна-единственная. В отрезке, полученном сдвигом, два конца. Эти же два конца при сдвиге в квадрат дают нам еще две точки: вершины квадрата. В общем, очевидно: при сдвиге количество вершины удваивается, так как есть фигура в начальном положении, и в конечном. У куба 8 вершин, следовательно, у тессеракта 16. Пересчитаем теперь тессеракту ребра. У отрезка оно одно, у квадрата – начальное, конечное, плюс каждая вершина отрезка при сдвиге опишет сторону – итого 4. У куба в начальном квадрате 4 стороны (ребра), плюс 4 в конечном, плюс четыре вершины начального квадрата опишут еще 4 отрезка: итого 12. У нашей замечательной фигуры есть начальный куб с 12ю ребрами, конечный с 12ю и ребра, образованные сдвигом вершин: их 8: всего получается 32. Попытаемся сосчитать грани: у квадрата она одна, куб состоит из начального и конечного квадратов, плюс каждый отрезок описывает еще один: 1+1+4=6. Аналогично у гиперкуба 12 ребер куба опишут 12 новых граней: 6+6+12=24. Все? Итого, как кажется, тессеракт состоит из 16 вершин, 32 ребер и 24 граней. Но грани не ограничивают фигуру! Точно так же, как ребра не ограничивают куб, а вершины – квадрат. Границами тессеракта будут… правильно, кубы! Каждая грань начального куба при переносе описывает куб, итого 6, плюс начальный и конечный, всего 8. Составим таблицу наших данных: Заметим, что числа, стоящие в n-ой строке совпадают с коэффициентами разложения бинома (2x+1)n. Например, для точки (2x+1)0=1, для отрезка: (2x+1)1 =2x+1; для квадрата (2x+1)2 =4x2+4x+1. Аналогично для куба и тессеракта: Следовательно, заполним таблицу и для пятимерного гиперкуба:

Удивительные свойства четырехмерной фигуры
Слайд 7

Удивительные свойства четырехмерной фигуры

Проекция тессеракта. Возьмем проволочный куб и осветим ярким источником света. На стене мы получим тень. Поворачивая куб, мы получим различные тени. Наиболее подходящей является та, что изображена на слайде. Она показывает многие свойства куба: муха не сможет пройтись по нему, посетив все ребра по о
Слайд 8

Проекция тессеракта. Возьмем проволочный куб и осветим ярким источником света. На стене мы получим тень. Поворачивая куб, мы получим различные тени. Наиболее подходящей является та, что изображена на слайде. Она показывает многие свойства куба: муха не сможет пройтись по нему, посетив все ребра по одному разу и не взлетая с него. Если бы мы поздним вечером в четырехмерной Вселенной взяли проволочный тессеракт, зажгли бы свечу и спроецировали его на трехмерную стену (не забывайте, стенами комнаты в форме тессеракта будут кубы), мы бы получили проекцию гиперкуба на трехмерное пространство. Можно пересчитать в ней вершины: их действительно 16, соединены между собой 32 ребрами. Квадраты при проецировании потеряли свою форму, но параллелограммы, оставшиеся от них мы сосчитаем: их 24. Наконец, сосчитаем вырожденные кубы: верхний, нижний, левый, правый, передний, задний, внутренний и внешний: всего 8. Вспомним первую проекцию тессеракта, полученную нами сдвигом на бумаге: в ней тоже 8 «кубов», они показаны на слайде.

Проекция тессеракта
Слайд 9

Проекция тессеракта

Развертка тессеракта. Как собрать квадрат из проволоки? Мы берем кусочек, делим мысленно на четыре части и сгибаем под прямым углом. Можно считать кусочек проволоки разверткой квадрата. С кубом все несколько сложнее: из ленты, разделенной на 6 квадратов, куб сделать нельзя. Вырезав из бумаги крест и
Слайд 10

Развертка тессеракта. Как собрать квадрат из проволоки? Мы берем кусочек, делим мысленно на четыре части и сгибаем под прямым углом. Можно считать кусочек проволоки разверткой квадрата. С кубом все несколько сложнее: из ленты, разделенной на 6 квадратов, куб сделать нельзя. Вырезав из бумаги крест и снабдив его «хвостиками» для склейки граней, можно сделать куб. Так и делают на заводе коробки из листа картона. Проволока – одномерный материал, картон – двухмерный. С трехмерным материалом проблем нет: можно купить большой брусок дерева или плотной резины. Как же четырехмерному человеку вырезать из дерева развертку тессеракта? Что необходимо знать при построении развертки? Кубы, ограничивающие тессеракт, пересекаются между собой гранями, логично предположить. Используя проекцию фигуры, заметим, что центральный куб имеет пересечение с 6ю кубами. Так как все кубы в тессеракте равносильны, ведь стороны квадрата ничем одна от другой не отличается, то у каждого куба должно быть 6 соседей. Это логично, ведь у куба 6 граней. Итак, возьмем куб, приделаем к нему еще 6. Восьмой остался «без дела». Трудно судить, как соберет четырехмерный школьник тессеракт из нашей развертки, поэтому наиболее логично будет подсоединить лишний куб гранью к другому. Получится тело, похожее на развертку куба: трехмерный крест. К слову, его использовал в картинах, как и многие другие математические объекты, художник Сальвадор Дали.

Развертка тессеракта
Слайд 11

Развертка тессеракта

Применение тессеракта Казалось бы, где можно применять несуществующий объект? В быту, разумеется, мы не встретим четырехмерную коробку или стакан, но есть у четырехмерного куба интересное свойство. Предположим, канатоходец идет по тонкой проволоке. Может ли он пройти все точки подвеса этой проволоки
Слайд 12

Применение тессеракта Казалось бы, где можно применять несуществующий объект? В быту, разумеется, мы не встретим четырехмерную коробку или стакан, но есть у четырехмерного куба интересное свойство. Предположим, канатоходец идет по тонкой проволоке. Может ли он пройти все точки подвеса этой проволоки, вернувшись туда, откуда начал, не проходя по канату дважды? Очевидно, нет, выйдя из начала, он дойдет до конца и не сможет вернуться обратно: нет второй дороги. С точки зрения теории графов это понятно: из каждого конца отрезка исходит нечетное число ребер (одно). Теперь предположим, что протянули проволочный квадрат. По нему можно пройти от начала до конца, так как в каждой вершине сходятся два ребра. Пустим теперь муху по проволочному кубу. Она не сможет пройтись по всем его ребрам, так как в каждой точке пересекаются целых три штуки. Тессеракт же примечателен тем, что в каждой его вершине сходятся по 4 ребра! Соответственно, так как все ребра тессеракта равны, то он будет являться связным графом, который можно нарисовать не отрывая руки, и притом вернуться в точку, с которой мы начинали! Мы вывели одно интересное свойство гиперкубов: гиперкубы четной размерности можно нарисовать, не отрывая руки и вернуться в исходную точку, а нечетной – нет. Это широко используется при построении графов. Тессеракт удобен тем, что все его ребра равны.

Список похожих презентаций

Построение треугольника по трем элементам

Построение треугольника по трем элементам

Построение треугольника по трем элементам. 1 вариант - построение треугольника по двум сторонам и углу между ними. 2 вариант - построение треугольника ...
Построение сечений: метод следа

Построение сечений: метод следа

Существует три основных метода построения сечений многогранников: Метод следов. Метод вспомогательных сечений. Комбинированный метод. Метод следов ...
Построение точек по заданным координатам

Построение точек по заданным координатам

Эталон для самопроверки домашнего задания: Стр. 56, № 10 36 : 2 . 3 = 54 (км/ч) скорость второго грузовика; 36 + 54 = 90 (км/ч) скорость сближения ...
Построение сечений многогранников

Построение сечений многогранников

В работе над проектом принимали участие ученики 9 класса ГОУ СОШ «Школа здоровья» №198 г. Москвы. Пономарёв Руслан Нелюбова Татьяна. Колотикова Дарина. ...
Построение сечений многогранников методом «следа»

Построение сечений многогранников методом «следа»

Секущей плоскостью многогранника называется такая плоскость, по обе стороны от которой есть точки данного многогранника. Сечением многогранника называется ...
Построение правильных многоугольников

Построение правильных многоугольников

В заданиях на построение используются: карандаш, линейка(для проведения прямых, лучей и отрезков) и циркуль(для построения окружностей и дуг). I. ...
Построение сечений многогранника

Построение сечений многогранника

Содержание. Определение. Примеры построений сечений. Задания на построение сечений. Определение. Если пересечением многогранника и плоскости является ...
Построение геометрических тел

Построение геометрических тел

Проверь свое пространственное мышление. Принадлежит ли пара изображений одному и тому же кубику? . Найди соответствие букв и цифр. Цилиндры Призмы. ...
Построение геометрических тел

Построение геометрических тел

Пирамида Призма S. Проекция геометрических тел на плоскость. В куб вписан октаэдр. F A D C B E. ...
Построение арифметических выражений

Построение арифметических выражений

Арифметическое выражение может включать константы, переменные, функции, скобки, знаки. Приоритет: унарный минус *, /, div, mod +, - Порядок действий ...
Построение биссектрис треугольника

Построение биссектрис треугольника

Чертим треугольник. В С А. Строим биссектрису угла А. D н X Z. Строим биссектрису угла В. Е k. Строим биссектрису угла C. s F. Точка О – точка пересечения ...
Построение аксонометрических проекций

Построение аксонометрических проекций

-1- Способ построения «от формообразующей плоскости». Чертёж предмета в системе прямоугольных проекций. 0 X Z Y. Этапы построения аксонометрических ...
Пирамида. Построение пирамиды и её плоских сечений. Усечённая пирамида. Правильная пирамида.

Пирамида. Построение пирамиды и её плоских сечений. Усечённая пирамида. Правильная пирамида.

Что такое пирамида? Пирамида – это многогранник, у которого одна грань ( основание пирамиды ) – это произвольный многоугольник ( ABCDE, рис.), а остальные ...
Периметр треугольника. Построение треугольника по заданным сторонам

Периметр треугольника. Построение треугольника по заданным сторонам

1.Классификация треугольников по длинам сторон. Равносторонний треугольник. 4 см 4см. Разносторонний треугольник. 5см 6 см 7 см. Равнобедренный треугольник. ...
Построение циркулем и линейкой

Построение циркулем и линейкой

Цели урока:. Рассмотреть новый класс задач на построение; Рассмотреть примеры задач на построение; Научиться решать такие задачи. Оцени себя! Верные ...
Построение геометрических фракталов методом рекурсии

Построение геометрических фракталов методом рекурсии

"Почему геометрию часто называют холодной и сухой? Одна из причин заключается в её неспособности описать форму облака, горы, дерева или берега моря. ...
Моделирование в стереометрии Построение сечений

Моделирование в стереометрии Построение сечений

Теорема:. Если две непараллельные прямые, принадлежащие одной плоскости, пересекают прямую, не лежащую в этой плоскости, то все три прямые пересекаются ...
Построение графика квадратичной функции

Построение графика квадратичной функции

Сдвиг графика функции y = ax2 вдоль оси y. y = x2 y = x2+1 x y. -2 1 0 y = x2 – 2. Сдвиг графика функции y = ax2 вдоль оси x. -3 y = (x+3)2. 2 y = ...
Построение равнобедренного треугольника

Построение равнобедренного треугольника

Задача. Условие: Построить ABC по стороне АС=4см и углу при основании. Дано: АС=4 см Угол α А С А. Построение. Построение: 1) Построить прямую a 2)AC ...
Построение графика квадратичной функции

Построение графика квадратичной функции

Цели:. Формирование у учащихся умения строить график квадратичной функции в соответствии со схемой. определение. Квадратичной функцией называется ...

Конспекты

Построение сечения тетраэдра и параллелепипеда

Построение сечения тетраэдра и параллелепипеда

Методическая разработка урока. Дата проведения урока. . . 10 класс. Тема урока: «Построение сечения тетраэдра и параллелепипеда». Тип урок: ...
Построение треугольника по трем элементам

Построение треугольника по трем элементам

Муниципальное бюджетное общеобразовательное учреждение. «Истимисская средняя образовательная школа». Ключевского района. Алтайского края. ...
Построение сечений многогранников

Построение сечений многогранников

Муниципальное бюджетное общеобразовательное учреждение. средняя общеобразовательная школа № 1 им. Гриши Акулова. . г.Донецка, Ростовской области. ...
Построение сечений многогранников на основе аксиоматики

Построение сечений многогранников на основе аксиоматики

Чудаева Елена Владимировна, учитель математики,. МОУ «Инсарская средняя общеобразовательная школа №1»,. г. Инсар, Республика Мордовия. . Автор. ...
Построение правильных многоугольников

Построение правильных многоугольников

Открытый урок по геометрии в 9 классе(в рамках ФГОС). Учитель 1 кв. категории - Савченко Мария Анатольевна. МАОУ «Молчановская СОШ № 2» Молчановского ...
Построение сечений

Построение сечений

Шарова Елена Владимировна. Учитель математики. Муниципального общеобразовательного учреждения Усвятская средняя общеобразовательная школа. Номинация: ...
Построение графика квадратичной функции

Построение графика квадратичной функции

Открытый урок по алгебре 8 класс. «Построение графика квадратичной функции». учителя ГОУ центра образования № 671 «Перспектива» Санкт-Петербурга. ...
Построение отрезков

Построение отрезков

Урок математики 1 класс. Тема: Построение отрезков. . . Тип урока. : изучение нового материала. . Цель урока:. формировать умение чертить ...
Построение графика квадратичной функции

Построение графика квадратичной функции

ПЛАН-КОНСПЕКТ УРОКА Построение графика квадратичной функции. . ФИО (полностью). . Мурадова О.Р. . . . Место работы. . ...
Построение графика квадратичной функции

Построение графика квадратичной функции

Учитель: Рогачева Татьяна Викторовна. Место работы: ГОУ СОШ №103, Санкт-Петербург. Должность: Учитель математики. Урок алгебры в 9 классе. . ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 апреля 2019
Категория:Математика
Содержит:12 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации