Презентация "Теория графов" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14

Презентацию на тему "Теория графов" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 14 слайд(ов).

Слайды презентации

V-множество вершин, E- множество ребер Граф - G(V, Е). Л. Эйлер 1736 г. G(V, Е, f) V,E – множества, отображение инциденции f: Е V&V множества Е в V&V. Основы теории графов
Слайд 1

V-множество вершин, E- множество ребер Граф - G(V, Е). Л. Эйлер 1736 г.

G(V, Е, f) V,E – множества, отображение инциденции f: Е V&V множества Е в V&V

Основы теории графов

V={A,В,С,D,F,Н,P} – множество точек, E={a,b,с,d,e,f,g,h,p,l} – множество линий f: Е→ V&V, определяется по закону f: a→(H&H), b→(P&F), c→(B&C), d→(A&B), e→(P&F), f→(B&H), g→(B&H), h→(A&H), p→(A&B), l→(A&B)
Слайд 2

V={A,В,С,D,F,Н,P} – множество точек, E={a,b,с,d,e,f,g,h,p,l} – множество линий f: Е→ V&V, определяется по закону f: a→(H&H), b→(P&F), c→(B&C), d→(A&B), e→(P&F), f→(B&H), g→(B&H), h→(A&H), p→(A&B), l→(A&B)

Определение инцидентности. Пусть задан абстрактный граф G(V, Е, f). Если отображение f сопоставляет ребру е пару вершин (х1&х2) , т.е. f(e) = (х1&х2), то ребро е инцидентно вершинам х1 и х2. «ребро е соединяет вершины x1 и x2» «вершины x1 и x2 являются граничными точками ребра е». Если f(е)
Слайд 3

Определение инцидентности. Пусть задан абстрактный граф G(V, Е, f). Если отображение f сопоставляет ребру е пару вершин (х1&х2) , т.е. f(e) = (х1&х2), то ребро е инцидентно вершинам х1 и х2. «ребро е соединяет вершины x1 и x2» «вершины x1 и x2 являются граничными точками ребра е». Если f(е) = (x&x), то ребро называется петлей в вершине х. Определение смежности. Две вершины x1 и x2 графа G(V, Е, f) называются смежными, если в графе существует ребро е, инцидентное этим вершинам. Два ребра графа называются смежными, если существует вершина, инцидентная обоим этим ребрам.

Степенью вершины графа называется количество инцидентных ей ребер (для петли степень подсчитывается дважды). Вершины графа называются четными или нечетными в зависимости от четности их степеней. Теорема 1. В любом конечном графе G(V, Е) количество нечетных вершин — четно. Сумма степеней всех вершин
Слайд 4

Степенью вершины графа называется количество инцидентных ей ребер (для петли степень подсчитывается дважды). Вершины графа называются четными или нечетными в зависимости от четности их степеней. Теорема 1. В любом конечном графе G(V, Е) количество нечетных вершин — четно. Сумма степеней всех вершин равна удвоенному числу ребер графа: ∑ Q(x)=2|E|

Операции разборки графа: удаление ребра между двумя вершинами графа. 2) удаление вершины графа вместе со всеми инцидентными ребрами. Подграфом графа G называется такая его часть G1, которая получается из графа G при помощи конечного числа операций разборки вида 2. Суграфом графа G называется такая е
Слайд 5

Операции разборки графа: удаление ребра между двумя вершинами графа. 2) удаление вершины графа вместе со всеми инцидентными ребрами. Подграфом графа G называется такая его часть G1, которая получается из графа G при помощи конечного числа операций разборки вида 2. Суграфом графа G называется такая его часть G1, которая получается из графа G при помощи конечного числа операций разборки вида 1.

Пример операций разборки
Слайд 6

Пример операций разборки

G(V, Е, f) V={А1,А2,…,Аn} E={a1,a2,…,an}. Конечная последовательность ребер графа a1,a2,…,ak (не обязательно различных) называется маршрутом длины k, если граничные точки двух соседних ребер последовательности совпадают. Маршрут называется замкнутым, если его начальная и конечная вершины совпадают.
Слайд 7

G(V, Е, f) V={А1,А2,…,Аn} E={a1,a2,…,an}. Конечная последовательность ребер графа a1,a2,…,ak (не обязательно различных) называется маршрутом длины k, если граничные точки двух соседних ребер последовательности совпадают. Маршрут называется замкнутым, если его начальная и конечная вершины совпадают. В противном случае маршрут незамкнутый. Цепь - незамкнутый маршрут, состоящий из последовательности различных ребер. Простая цепь - маршрут, который не проходит дважды через одну и ту же вершину. Цикл - замкнутый маршрут, состоящий из последовательности различных ребер. Простой цикл - маршрут, в котором начальная и конечная вершины совпадают, а все остальные вершины различны.

Древовидные графы. Онределение 1. Деревом называется конечный связный граф без циклов. Онределение 2. Деревом называется конечный граф, любые две вершины которого соединяются единственной цепью. Определение 3. Деревом называется конечный связный граф, для которого количество ребер на единицу меньше
Слайд 8

Древовидные графы

Онределение 1. Деревом называется конечный связный граф без циклов. Онределение 2. Деревом называется конечный граф, любые две вершины которого соединяются единственной цепью. Определение 3. Деревом называется конечный связный граф, для которого количество ребер на единицу меньше количества вершин. Определение 4. Деревом называется конечный граф, обладающий свойством: граф не содержит циклов, но добавление ребра между любыми не смежными вершинами приводит к появлению цикла.

Уникурсальные графы Задача Эйлера о кенигсбергских мостах Можно ли пройти по всем мостам, изображенным на рисунке, так, чтобы на каждом из них побывать лишь один раз и вернуться к тому месту, откуда началась прогулка?
Слайд 9

Уникурсальные графы Задача Эйлера о кенигсбергских мостах Можно ли пройти по всем мостам, изображенным на рисунке, так, чтобы на каждом из них побывать лишь один раз и вернуться к тому месту, откуда началась прогулка?

Уникурсальные графы Граф называется уникурсальным графом (или эйлеровой линией), если все его ребра можно включить либо в простой цикл, либо в простую цепь. Признаки уникурсальных графов: Лемма. Если связный граф имеет более двух нечетных вершин, то он не уникурсален. Теорема 1. Связный граф являетс
Слайд 10

Уникурсальные графы Граф называется уникурсальным графом (или эйлеровой линией), если все его ребра можно включить либо в простой цикл, либо в простую цепь. Признаки уникурсальных графов: Лемма. Если связный граф имеет более двух нечетных вершин, то он не уникурсален. Теорема 1. Связный граф является эйлеровым циклом тогда и только тогда, когда он имеет только четные вершины. При этом начало и конец уникурсального пути совпадают и могут находиться в любой вершине графа. Теорема 2. Связный граф является эйлеровой цепью тогда и только тогда, когда он имеет ровно две нечетные вершины, а остальные вершины этого графа четны. При этом начало и конец уникурсального пути находятся в нечетных вершинах.

Ориентированные графы. G(V, Е, f) V={A,В,С,D,Р} E={a1,a2,…,a12}. Отображение инциденции: f: a1→(A,B); a2→(A,B); a3→(B,C); a4→(B,P); a5→(P,C); a6→(D,C); a7→(D,C); a8→(A,P); a9→(P,D); a10→(A,D); a11→(D,D); a12→(D,D).
Слайд 11

Ориентированные графы

G(V, Е, f) V={A,В,С,D,Р} E={a1,a2,…,a12}. Отображение инциденции: f: a1→(A,B); a2→(A,B); a3→(B,C); a4→(B,P); a5→(P,C); a6→(D,C); a7→(D,C); a8→(A,P); a9→(P,D); a10→(A,D); a11→(D,D); a12→(D,D).

В ориентированном графе параллельные дуги бывают двух типов: строго параллельные (одинаково ориентированные) нестрого параллельные (ориентированные по-разному).
Слайд 12

В ориентированном графе параллельные дуги бывают двух типов: строго параллельные (одинаково ориентированные) нестрого параллельные (ориентированные по-разному).

Задача выбора кратчайшего маршрута. Ответ: 2 1-2 20 5 1-2-5 40 3 1-3 15 6 1-3-4-6 43 4 1-3-4 23 7 1-2-5-7 49
Слайд 13

Задача выбора кратчайшего маршрута

Ответ: 2 1-2 20 5 1-2-5 40 3 1-3 15 6 1-3-4-6 43 4 1-3-4 23 7 1-2-5-7 49

Графовая модель образовательного учреждения. Пользователи образовательных услуг (П). Преподаватели и сотрудники (работники) (Р). Инфраструктура (Б). Комплекс нормативно-правовых актов (Н). Информационные технологии (И).
Слайд 14

Графовая модель образовательного учреждения

Пользователи образовательных услуг (П). Преподаватели и сотрудники (работники) (Р). Инфраструктура (Б). Комплекс нормативно-правовых актов (Н). Информационные технологии (И).

Список похожих презентаций

Теория графов

Теория графов

Что такое теория графов? Теория графов – это раздел дискретной математики, изучающий свойства графов. В общем смысле граф представляется как множество ...
Теория вероятности и статистика

Теория вероятности и статистика

Определение. Пусть А и В – два события, относящиеся к одному случайному опыту. Взяв все элементарные события, которые благоприятствуют и событию А, ...
Теория вероятности в школе

Теория вероятности в школе

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Знание закономерностей, которым подчиняются массовые случайные ...
Метод графов

Метод графов

Введение. Графы заинтересовали нас своей возможностью помогать в решении различных головоломок, математических и логических задач. Так как мы участвуем ...
Теория телетрафика

Теория телетрафика

АНАЛИТИЧЕСКИЕ МЕТОДЫ В ТЕОРИИ ТЕЛЕТРАФИКА. Андрей Андреевич Марков родился 14 июня 1856. В цикле работ, опубликованном в 1906-1912гг., заложил основы ...
Теория риска

Теория риска

Структура позиционной игры. Позиционными играми    называются игры, в которых задается последовательность принятия решений игроками в условиях меняющихся ...
Теория конечных множеств (комбинаторика)

Теория конечных множеств (комбинаторика)

Если конечное множество A состоит из m элементов, то мы будем писать: |A| = m или n(A) = m. Теорема 1 (принцип сложения). Пусть A B = . Тогда n(A ...
Теория бесконечных множеств

Теория бесконечных множеств

Теорема 2. Отношение равномощности есть отношение эквивалентности. Доказательство. Необходимо проверить три условия: рефлексивность, симметричность, ...
Решение задач с помощью графов

Решение задач с помощью графов

Графы – «графо» (лат.) – «пишу». график биография голография. Задача. 1. Андрей 2. Борис 3. Виктор 4. Галина 5. Дмитрий 6. Елена. А Б Г Е В Д. Граф. ...
Решение комбинаторных задач с помощью графов

Решение комбинаторных задач с помощью графов

Вопросы к уроку. Чем занимается комбинаторика? Что такое граф? Какие задачи относятся к комбинаторным? Как решаются комбинаторные задачи с помощью ...
Решение задач с помощью графов

Решение задач с помощью графов

Граф. Простейшая модель системы.Отображает элементарный состав системы и структуру связей. Сеть. Граф с возможностью множества различных путей перемещения ...
Применение графов в теории вероятностей

Применение графов в теории вероятностей

Вероятностно – статистическая линия становится сегодня неотъемлемой частью школьного курса математики. Не исключено, что задачи, связанные с вычислением ...
Практические занятия по дисциплине "Теория принятия решений"

Практические занятия по дисциплине "Теория принятия решений"

Практические занятия по дисциплине «Теория принятия решений». Призваны закрепить знания теоретических вопросов, получить практические навыки решения ...
Теория вероятности и статистика

Теория вероятности и статистика

Вероятность и статистика. Вероятностно-статистические закономерности изучает специальный раздел математики – теория вероятности. Теория вероятностей ...
Теория вероятностей

Теория вероятностей

№ 1. В кармане у Миши 4 конфеты – «Грильяж», «Маска», «Белочка», «Красная шапочка», а так же ключи от квартиры. Вынимая ключи, Миша случайно выронил ...
Теория вероятности события

Теория вероятности события

Введение в комбинаторику. В математике существует немало задач, в которых требуется из имеющихся элементов составить различные наборы, подсчитать ...
Теория вероятностей в нашей жизни

Теория вероятностей в нашей жизни

Достоверные, случайные и невозможные события. Достоверное событие – событие, которое в данном опыте обязательно наступит. Случайное событие – событие, ...
Теория катастроф

Теория катастроф

Теория катастроф. Теория катастроф — раздел математики, включающий в себя теорию бифуркаций дифференциальных уравнений (динамических систем) и теорию ...
Теория вероятностей и комбинаторные правила

Теория вероятностей и комбинаторные правила

Классическое определение вероятности. Стохастическим называют опыт, если заранее нельзя предугадать его результаты. Результаты (исходы) такого опыта ...
Теория множеств

Теория множеств

Элементы теории множеств. © Аликина Е.Б. Основу теории математики составляют понятия и отношения между этими понятиями, которые устанавливаются при ...

Конспекты

Теория вероятностей и комбинаторика в заданиях ЕГЭ

Теория вероятностей и комбинаторика в заданиях ЕГЭ

ШЕВЕЛЕВА НАДЕЖДА. МИХАЙЛОВНА. МОУ «Ягельная СОШ» Надымского района. Ямало-Ненецкого автономного округа. Учитель математики. ...
Теория вероятностей

Теория вероятностей

МБОУ «СОШ № 143» г. Красноярска,. . учитель математики Князькина Татьяна Викторовна. Теория вероятностей: подготовка к ЕГЭ 2014. Не так ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:31 марта 2019
Категория:Математика
Содержит:14 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации