- Теория вероятностей и комбинаторные правила

Презентация "Теория вероятностей и комбинаторные правила" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35
Слайд 36
Слайд 37
Слайд 38
Слайд 39
Слайд 40
Слайд 41
Слайд 42
Слайд 43
Слайд 44
Слайд 45
Слайд 46
Слайд 47
Слайд 48
Слайд 49
Слайд 50
Слайд 51
Слайд 52
Слайд 53
Слайд 54
Слайд 55
Слайд 56
Слайд 57
Слайд 58
Слайд 59
Слайд 60
Слайд 61
Слайд 62
Слайд 63
Слайд 64

Презентацию на тему "Теория вероятностей и комбинаторные правила" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 64 слайд(ов).

Слайды презентации

Теория вероятностей и комбинаторные правила для решение задачи ЕГЭ В10. Новые прототипы (2013). МБОУ г. Мурманска гимназия № 3 Шахова Татьяна Александровна
Слайд 1

Теория вероятностей и комбинаторные правила для решение задачи ЕГЭ В10. Новые прототипы (2013)

МБОУ г. Мурманска гимназия № 3 Шахова Татьяна Александровна

Классическое определение вероятности. Стохастическим называют опыт, если заранее нельзя предугадать его результаты. Результаты (исходы) такого опыта называются событиями. Пример: выбрасывается игральный кубик (опыт); выпадает двойка (событие). Событие, которое обязательно произойдет в результате исп
Слайд 2

Классическое определение вероятности

Стохастическим называют опыт, если заранее нельзя предугадать его результаты. Результаты (исходы) такого опыта называются событиями.

Пример: выбрасывается игральный кубик (опыт); выпадает двойка (событие).

Событие, которое обязательно произойдет в результате испытания, называется достоверным, а которое не может произойти, - невозможным.

Пример: В мешке лежат три картофелины.

Опыт – изъятие овоща из мешка.

Достоверное событие – изъятие картофелины.

Невозможное событие – изъятие кабачка.

Несовместимыми (несовместными) называют события, если наступление одного из них исключает наступление других. Пример: 1) В результате одного выбрасывания выпадает орел (событие А) или решка (событие В). События А и В - несовместны. 2) В результате двух выбрасываний выпадает орел (событие А) или решк
Слайд 3

Несовместимыми (несовместными) называют события, если наступление одного из них исключает наступление других.

Пример: 1) В результате одного выбрасывания выпадает орел (событие А) или решка (событие В).

События А и В - несовместны.

2) В результате двух выбрасываний выпадает орел (событие А) или решка (событие В).

События А и В - совместны. Выпадение орла в первый раз не исключает выпадение решки во второй

Полной группой событий называется множество всех событий рассматриваемого опыта, одно из которых обязательно произойдет, а любые два других несовместны. Пример: 1) Опыт – один раз выбрасывается монета. Элементарные события: выпадение орла и выпадение решки образуют полную группу. События образующие
Слайд 4

Полной группой событий называется множество всех событий рассматриваемого опыта, одно из которых обязательно произойдет, а любые два других несовместны.

Пример: 1) Опыт – один раз выбрасывается монета.

Элементарные события: выпадение орла и выпадение решки образуют полную группу.

События образующие полную группу называют элементарными.

Вероятностью случайного события А называется отношение числа элементарных событий m, которые благоприятствуют этому событию, к общему числу всех элементарных событий, входящих в данную группу n . Сумма вероятностей всех событий, входящих в полную группу равна 1. Пример: Опыт – один раз выбрасывается
Слайд 5

Вероятностью случайного события А называется отношение числа элементарных событий m, которые благоприятствуют этому событию, к общему числу всех элементарных событий, входящих в данную группу n .

Сумма вероятностей всех событий, входящих в полную группу равна 1.

Пример: Опыт – один раз выбрасывается монета.

А – выпал орел Р(А)=0,5

В – выпала решка Р(В)=0,5

Полная группа.

Два события, образующие полную группу называются противоположными. В – за одно выбрасывание выпал орел. А – за одно выбрасывание выпала решка. А и В – противоположные события
Слайд 6

Два события, образующие полную группу называются противоположными.

В – за одно выбрасывание выпал орел

А – за одно выбрасывание выпала решка

А и В – противоположные события

Равновозможными называют события, если в результате опыта ни одно из них не имеет большую возможность появления, чем другие. Примеры: 1) Опыт - выбрасывается монета. Выпадение орла и выпадение решки – равновозможные события. 2) В урне лежат три шара. Два белых и синий. Опыт – извлечение шара. Событи
Слайд 7

Равновозможными называют события, если в результате опыта ни одно из них не имеет большую возможность появления, чем другие.

Примеры: 1) Опыт - выбрасывается монета.

Выпадение орла и выпадение решки – равновозможные события.

2) В урне лежат три шара. Два белых и синий.

Опыт – извлечение шара.

События – извлекли синий шар и извлекли белый шар - неравновозможны.

Появление белого шара имеет больше шансов.

Вероятности равновозможных событий равны.

Вероятность произведения совместных событий равна произведению вероятностей этих событий. Пример: Найти вероятность того, что в результате двух выбрасываний игральной кости выпадет шестерка. Событие А (первый раз выпала шестерка Р(А)=1/6) и событие В (второй раз выпала шестерка Р(В)=1/6) - совместны
Слайд 8

Вероятность произведения совместных событий равна произведению вероятностей этих событий.

Пример: Найти вероятность того, что в результате двух выбрасываний игральной кости выпадет шестерка.

Событие А (первый раз выпала шестерка Р(А)=1/6) и событие В (второй раз выпала шестерка Р(В)=1/6) - совместны.

Произведением событий А и В называется событие АВ, которое наступает тогда и только тогда, когда наступают оба события: А и В.

Вероятность наступления суммы несовместных событий равна сумме вероятностей этих событий. Пример: Найти вероятность того, что в результате одного выбрасывания игральной кости выпадет шестерка или двойка. Событие А (выпала шестерка Р(А)=1/6) и событие В (выпала двойка Р(В)=1/6) - несовместны. Суммой
Слайд 9

Вероятность наступления суммы несовместных событий равна сумме вероятностей этих событий.

Пример: Найти вероятность того, что в результате одного выбрасывания игральной кости выпадет шестерка или двойка.

Событие А (выпала шестерка Р(А)=1/6) и событие В (выпала двойка Р(В)=1/6) - несовместны.

Суммой событий А и В называется событие А + В, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий: А или В.

Вероятность наступления суммы совместных событий равна сумме вероятностей наступления этих событий минус вероятность их произведения. Пример: Найти вероятность того, что в результате двух выбрасываний игральной кости выпадет один раз шестерка или один раз двойка. Событие А (выпала шестерка Р(А)=1/12
Слайд 10

Вероятность наступления суммы совместных событий равна сумме вероятностей наступления этих событий минус вероятность их произведения.

Пример: Найти вероятность того, что в результате двух выбрасываний игральной кости выпадет один раз шестерка или один раз двойка.

Событие А (выпала шестерка Р(А)=1/12) и событие В (выпала двойка Р(В)=1/12) - совместны.

Статистическое определение вероятности. Частотой (статистической вероятностью) случайного события А называется отношение числа m опытов, в результате которых происходит событие А, к общему числу всех опытов n . Примеры: 1) Из 100 рожденных детей родилось 48 девочек. Найти частоту рождения девочек. 2
Слайд 11

Статистическое определение вероятности

Частотой (статистической вероятностью) случайного события А называется отношение числа m опытов, в результате которых происходит событие А, к общему числу всех опытов n .

Примеры: 1) Из 100 рожденных детей родилось 48 девочек. Найти частоту рождения девочек.

2) 4% выпущенных деталей имеют дефекты. Найти частоту деталей , выпущенных с дефектами.

Для конечных множеств событий при нахождении m и n широко используют правила комбинаторики. Задача №1: Сколько двузначных чисел можно составить используя цифры 7; 8; 9 (цифры могут повторяться)? В данном случае легко перебрать все комбинации. 77 78 79 88 87 89 99 97 98 9 вариантов
Слайд 12

Для конечных множеств событий при нахождении m и n широко используют правила комбинаторики.

Задача №1: Сколько двузначных чисел можно составить используя цифры 7; 8; 9 (цифры могут повторяться)?

В данном случае легко перебрать все комбинации.

77 78 79 88 87 89 99 97 98 9 вариантов

Задача №2: Сколько пятизначных можно составить используя цифры 7; 8; 9 (цифры могут повторяться)? Как видим, в этой задаче перебор довольно затруднителен. Решим задачу иначе. На первом месте может стоять любая из трех цифр – 3 варианта. На втором месте может стоять любая из трех цифр – 3 варианта. Н
Слайд 13

Задача №2: Сколько пятизначных можно составить используя цифры 7; 8; 9 (цифры могут повторяться)?

Как видим, в этой задаче перебор довольно затруднителен.

Решим задачу иначе.

На первом месте может стоять любая из трех цифр – 3 варианта.

На втором месте может стоять любая из трех цифр – 3 варианта.

На третьем месте может стоять любая из трех цифр – 3 варианта.

На четвертом месте может стоять любая из трех цифр – 3 варианта.

На пятом месте может стоять любая из трех цифр – 3 варианта.

Комбинаторное правило умножения

Задачи открытого банка. Классическое определение вероятности.
Слайд 14

Задачи открытого банка. Классическое определение вероятности.

№ 319170 В чемпионате мира учавствуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что
Слайд 15

№ 319170 В чемпионате мира учавствуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

26.12.2017 Решение:

Благоприятных событий – 4.

Всего событий – 16.

Р=4/16=0,25 Ответ:0,25

№ 320190 На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное ме
Слайд 16

№ 320190 На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Неудобных мест 12+18=30

Событие А – досталось удобное место.

Р(А)=30/300=0,1

Всего событий – 300 (равно количеству мест)

Ответ:0,1

№ 320181 В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин? Возможные комбинации пар из 5 человек (1,2,3,4,5). 12 13 14 15
Слайд 17

№ 320181 В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

Возможные комбинации пар из 5 человек (1,2,3,4,5)

12 13 14 15 23 24 25 34 35 45 Всего - 10 У каждого 4 шанса Р=4/10=0,4 Ответ:0,4

№ 320205 Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры. А
Слайд 18

№ 320205 Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.

А- «Статор» начинает игру

В- начинает игру другая команда

«Статор» играет с тремя командами

Возможные комбинации:

ААА ААВ АВА ВАА АВВ ВВА ВАВ ВВВ Всего - 8 Благоприятное - 1 Ответ:0,125

№ 320212 На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук
Слайд 19

№ 320212 На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D.

Благоприятное событие А – паук пришел к выходу D. Одно.

На пути три развилки по два варианта 2·2·2=8

№ 320194 В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта. - всего рейсов. Попасть на первый рейс
Слайд 20

№ 320194 В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

- всего рейсов.

Попасть на первый рейс (равно как и на второй и на любой имеющийся) – один шанс из пяти .

Ответ:0,2

№ 320186 На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых. Возможные комбинации (независим
Слайд 21

№ 320186 На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.

Возможные комбинации (независимо от количества групп):

ДШН ДНШ ШДН ШНД НДШ НШД 6 - вариантов Благоприятных - 2 Ответ:0,33

№ 320196 При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного меньше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм. А – диаметр не больше 66,99 и не м
Слайд 22

№ 320196 При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного меньше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.

А – диаметр не больше 66,99 и не меньше 67,1

Диаметр меньше чем 66,99 мм или больше чем 67,01 мм – противоположное событие

Р(А) =0,965 Ответ:0,035

№ 320191 На олимпиаде в вузе участников рассаживают по трём аудиториям. В первых двух по 120 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 250 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасно
Слайд 23

№ 320191 На олимпиаде в вузе участников рассаживают по трём аудиториям. В первых двух по 120 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 250 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории.

Только 10 из 250 участников имеют шанс попасть в запасную аудиторию.

- участников не попали в первые две аудитории

Ответ:0,04

№ 320188 Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Сч
Слайд 24

№ 320188 Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

События «ничья», «выиграла», «проиграла» составляют полную группу.

=>Р(ничья)=1-Р(выиграла)-Р(проиграла)=1-0,4-0,4=0,2

Условию удовлетворяют три независимых события: А – команда выиграла в первой и во второй игре. Р(А)=0,4∙0,4=0,16. В – команда выиграла в первой игре и во второй сыграла вничью. Р(В)=0,2∙0,4=0,08. С – команда выиграла во второй игре и в первой сыграла вничью Р(С)= 0,2∙0,4=0,08. Ответ:0,32. А, В, С -н
Слайд 25

Условию удовлетворяют три независимых события:

А – команда выиграла в первой и во второй игре. Р(А)=0,4∙0,4=0,16

В – команда выиграла в первой игре и во второй сыграла вничью. Р(В)=0,2∙0,4=0,08

С – команда выиграла во второй игре и в первой сыграла вничью Р(С)= 0,2∙0,4=0,08

Ответ:0,32

А, В, С -несовместны

Задачи открытого банка. Сумма несовместных событий.
Слайд 26

Задачи открытого банка. Сумма несовместных событий.

№ 319171 На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим дву
Слайд 27

№ 319171 На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Событие А – вопрос на тему «Вписанная окружность»

Событие В – вопрос на тему «Параллелограмм»

События А и В – несовместны. (Если достался первый, то не достался второй.)

Ответ:0,35

№ 320203 Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19. Ответ:0,38 В=А+
Слайд 28

№ 320203 Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.

Ответ:0,38 В=А+С

А и С - несовместны

№ 320198 Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач. Ответ:0,07 С=А+В. А и В - несовместны
Слайд 29

№ 320198 Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач.

Ответ:0,07 С=А+В

А и В - несовместны

Задачи открытого банка. Произведение совместных событий.
Слайд 30

Задачи открытого банка. Произведение совместных событий.

№ 320183 Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза. Возможные исходы, удовлетворяющие условию: 1
Слайд 31

№ 320183 Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.

Возможные исходы, удовлетворяющие условию:

1 игра – жребий выигран Р=0,5 (Вероятность орла=0,5)

2 игра – жребий выигран Р=0,5 (Вероятность орла=0,5)

3 игра – жребий не выигран Р=0,5 (Вероятность решки=0,5)

Порядок игр в данной задаче не имеет значения. События совместны.

Событие А – жребий выигран ровно два раза

Р(А)=0,5∙0,5∙0,5=0,125

№ 320210 Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными. Ответ:0,8836. События А1 и А2 - совместны
Слайд 32

№ 320210 Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Ответ:0,8836

События А1 и А2 - совместны

№ 320187 При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последу
Слайд 33

№ 320187 При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

Событие А – первый раз не попал. Р(А)=1-0,4=0,6

Лучше переформулировать задачу.

Сколько выстрелов (n) надо сделать, чтобы вероятность непопадания была меньше или равна 0,02 (1-0,98)

Тогда рассматриваем события – не попал при следующих выстрелах (возможны если не попал первый раз т. е. к-во событий =n-1). P=1-0,6=0,4. Перебором определяем n. n=5 Ответ: 5
Слайд 34

Тогда рассматриваем события – не попал при следующих выстрелах (возможны если не попал первый раз т. е. к-во событий =n-1). P=1-0,6=0,4

Перебором определяем n.

n=5 Ответ: 5

Решение(второй способ): Вероятность промаха при первом выстреле равна 1-0,4=0,6. Вероятность промаха при каждом следующем выстреле равна 1-0,6=0,4. Будем стрелять, пока вероятность промаха будет менее 0,02 (1-0,98 – вероятность не уничтожения цели). 0,6∙0,4∙0,4∙∙∙
Слайд 35

Решение(второй способ):

Вероятность промаха при первом выстреле равна 1-0,4=0,6

Вероятность промаха при каждом следующем выстреле равна 1-0,6=0,4

Будем стрелять, пока вероятность промаха будет менее 0,02 (1-0,98 – вероятность не уничтожения цели)

0,6∙0,4∙0,4∙∙∙<0,02

№ 319175 Помещение освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит. Вероятность того, что перегорят обе лампы равна 0,3∙0,3=0,09. Событие – не перегорела хотя бы одна лампа
Слайд 36

№ 319175 Помещение освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Вероятность того, что перегорят обе лампы равна 0,3∙0,3=0,09

Событие – не перегорела хотя бы одна лампа – противоположное.

Его вероятность равна 1-0,09=0,81

Ответ:0,81

№ 319173 Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых. Событие А – попал. Р(А) =0,8 Р(А) =0,8 =>. (вероятност
Слайд 37

№ 319173 Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

Событие А – попал.

Р(А) =0,8 Р(А) =0,8 =>

(вероятность непопадания)

Все пять событий совместны

Р=0,8∙0,8∙0,8∙0,2∙ 0,2=0,02048

Ответ:0,02048

Задачи открытого банка. Произведение совместных событий и сумма несовместных.
Слайд 38

Задачи открытого банка. Произведение совместных событий и сумма несовместных.

№ 320211 Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забрак
Слайд 39

№ 320211 Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная из упаковки батарейка будет забракована.

Возможные благоприятные для задачи события. Исправная батарейка забракована (совместны). Неисправная батарейка забракована (совместны). Батарейка исправна и неисправна – несовместны, значит событие – забракована исправная и забракована неисправная – несовместны. Ответ:0,0296
Слайд 40

Возможные благоприятные для задачи события

Исправная батарейка забракована (совместны)

Неисправная батарейка забракована (совместны)

Батарейка исправна и неисправна – несовместны, значит событие – забракована исправная и забракована неисправная – несовместны.

Ответ:0,0296

№ 320207 Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положи
Слайд 41

№ 320207 Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

А1 – поступил пациент с гепатитом. Р(А1) =5%:100%=0,05. В1 – у больного гепатитом положительный анализ. Р(В1) =0,9. А1 и В1 – совместны. А2 – поступил здоровый пациент. Р(А2) =1-0,05=0,95. В2 – у здорового пациента положительный анализ. Р(В2) =0,01. А2 и В2 – совместны. Поступил больной и анализ пол
Слайд 42

А1 – поступил пациент с гепатитом

Р(А1) =5%:100%=0,05

В1 – у больного гепатитом положительный анализ

Р(В1) =0,9

А1 и В1 – совместны

А2 – поступил здоровый пациент

Р(А2) =1-0,05=0,95

В2 – у здорового пациента положительный анализ

Р(В2) =0,01

А2 и В2 – совместны

Поступил больной и анализ положительный

Поступил здоровый и анализ положительный

Эти события несовместны

Ответ:0,0545

На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к
Слайд 43

На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу А.

Шутка от составителей тренировочных работ на сайте alexlarin.com (убрали одну стенку).

Паук может прийти к выходу А синим путем.

Три развилки с двумя вариантами исходов.

Р1 =0,5∙0,5∙0,5=0,125

Шутка от составителей тренировочных работ на сайте alexlarin.com (задача отсутствует в открытом банке). 2) Паук может прийти к выходу А зеленым путем. Пять развилок. Р1=0,5∙0,5∙0,5=0,125. Р2=0,5∙0,5∙0,5∙0,5∙0,5=0,03125. Пришел к выходу А синим путем и пришел зеленым путем – несовместные события. Р=Р
Слайд 44

Шутка от составителей тренировочных работ на сайте alexlarin.com (задача отсутствует в открытом банке)

2) Паук может прийти к выходу А зеленым путем.

Пять развилок. Р1=0,5∙0,5∙0,5=0,125

Р2=0,5∙0,5∙0,5∙0,5∙0,5=0,03125

Пришел к выходу А синим путем и пришел зеленым путем – несовместные события.

Р=Р1+Р2=0,125+0,03125= =0,15625

Ответ: 0,15625

№ 320206 В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6
Слайд 45

№ 320206 В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

А4 – 4 июля хорошая погода. Р(А4)=0,8

В4 – 4 июля отличная погода. Р(В4)=1-0,8=0,2

А5 – 5 июля хорошая погода. Р(А5)=

0,8·0,8+0,2·0,2=0,68

В5 – 5 июля отличная погода. Р(В5)=

0,2·0,8+0,8·0,2=0,32

В6 – 6 июля отличная погода. Р(В6)=

0,32·0,8+0,68·0,2=0,392 Ответ:0,392 ?

Событие А5 – 5 июля хорошая погода возможно в двух случаях. Была хорошая и осталась такой. Вероятность=0,8·0,8 (была и осталась – совместные события). Была отличная и изменилась. Вероятность=0,2·0,2 (была и изменилась – совместные события). Случаи несовместны => Р(А5) = сумме вероятностей двух со
Слайд 46

Событие А5 – 5 июля хорошая погода возможно в двух случаях.

Была хорошая и осталась такой. Вероятность=0,8·0,8 (была и осталась – совместные события)

Была отличная и изменилась. Вероятность=0,2·0,2 (была и изменилась – совместные события)

Случаи несовместны => Р(А5) = сумме вероятностей двух событий

№ 320199 Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх пре
Слайд 47

№ 320199 Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание. Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5. Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.

А – набрано не менее 70 баллов по математике. Р(А)=0,6 В – набрано не менее 70 баллов по русск. языку. Р(В)=0,8 С – набрано не менее 70 баллов по англ. языку. Р(С)=0,7 D – набрано не менее 70 баллов по обществозн. Р(D)=0,5. Все эти события совместны. Вероятность поступления только на «Лингв.» =. 0,6
Слайд 48

А – набрано не менее 70 баллов по математике. Р(А)=0,6 В – набрано не менее 70 баллов по русск. языку. Р(В)=0,8 С – набрано не менее 70 баллов по англ. языку. Р(С)=0,7 D – набрано не менее 70 баллов по обществозн. Р(D)=0,5

Все эти события совместны

Вероятность поступления только на «Лингв.» =

0,6·0,8·0,7·(1-0,5)=0,168

Вероятность поступления только на «Комм.» =

0,6·0,8·0,5∙(1-0,7)=0,072

Вероятность поступления хотя бы на одну специальность =

=0,168+0,072+0,168=0,408 Ответ:0,408

Вероятность поступления на обе специальности=

0,6·0,8·0,7·0,5=0,168

Все эти события несовме стны

№ 320180 Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, на
Слайд 49

№ 320180 Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Событие А – взял пристрелянный. Р(А)=4/10=0,4

Событие В – взял непристрелянный. Р(В)=1-Р(А)=0,6

Вероятность непопадания из пристрелянного=1-0,9=0,1

Вероятность непопадания из непристрелянного=1-0,2=0,8

Событие А1 – взял пристрелянный и не попал. Р(А1)=Р(А)∙0,1=0,4∙0,1=0,04 (взял и не попал – совместные события). Событие В1 – взял непристрелянный и не попал. Р(В1)=Р(В)∙0,8=0,6∙0,8=0,48. Вероятность непопадания. Ответ:0,52
Слайд 50

Событие А1 – взял пристрелянный и не попал. Р(А1)=Р(А)∙0,1=0,4∙0,1=0,04 (взял и не попал – совместные события)

Событие В1 – взял непристрелянный и не попал. Р(В1)=Р(В)∙0,8=0,6∙0,8=0,48

Вероятность непопадания

Ответ:0,52

№ 319353 Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая –– 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая –– 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным. Событие А –стекло
Слайд 51

№ 319353 Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая –– 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая –– 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Событие А –стекло выпустила первая фабрика

Р(А)=0,45

Событие В –стекло выпустила вторая фабрика

Р(В)=0,55

Событие А1 – колесо, выпущенное первой фабрикой – бракованное.

Р(А1 )=0,03

Событие В1 – колесо выпущенное второй фабрикой – бракованное.

Р(В1 )=0,01

- куплено бракованное колесо первой ф. - куплено бракованное колесо второй ф. Эти события - несовместны. Р=0,0135+0,0055=0,019 Ответ:0,019
Слайд 52

- куплено бракованное колесо первой ф.

- куплено бракованное колесо второй ф.

Эти события - несовместны

Р=0,0135+0,0055=0,019 Ответ:0,019

Задачи открытого банка. Статистическое определение вероятности..
Слайд 53

Задачи открытого банка. Статистическое определение вероятности..

№ 320189 В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных. родилось девочек. статистическая вероятность (частота рождения). Ответ:0,4976
Слайд 54

№ 320189 В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.

родилось девочек.

статистическая вероятность (частота рождения).

Ответ:0,4976

№ 320195 Вероятность того, что новый DVD-проигрыватель в течение года поступит в гарантийный ремонт, равна 0,045. В некотором городе из 1000 проданных DVD-проигрывателей в течение года в гарантийную мастерскую поступила 51 штука. На сколько отличается частота события «гарантийный ремонт» от его веро
Слайд 55

№ 320195 Вероятность того, что новый DVD-проигрыватель в течение года поступит в гарантийный ремонт, равна 0,045. В некотором городе из 1000 проданных DVD-проигрывателей в течение года в гарантийную мастерскую поступила 51 штука. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

статистическая вероятность.

Ответ:0,006

№ 320200 На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. А – произведенная тарелка и
Слайд 56

№ 320200 На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов.

А – произведенная тарелка имеет дефект

Р(А) =10%:100%=0,1

В – при контроле выявлена дефектная тарелка

Р(В) =80%:100%=0,8

Вероятность того, что произвели дефектную тарелку и обнаружили дефект =

Событие – произведена тарелка без дефекта и дефект не обнаружен противоположно предыдущему. Его вероятность =

Ответ:0,92

№ 319177 Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого х
Слайд 57

№ 319177 Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

В задаче требуется узнать, какую часть всех яиц выпускает первое хозяйство. Это статистическая вероятность события «куплено яйцо из первого хозяйства»

Пусть х яиц выпускает первое хозяйство (0,4х – высшей кат.), у – второе (0,2у – высшей кат.).

Составим уравнение:

Значит первое хозяйство поставляет ¾ всех яиц.

Ответ:0,75

Задачи открытого банка. Сумма совместных событий.
Слайд 58

Задачи открытого банка. Сумма совместных событий.

№ 320174 В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен. Событие А – исправен первый автомат Р(А)=1-0,05=0,95. Событие В – исправен второй автомат. А∙В – испр
Слайд 59

№ 320174 В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Событие А – исправен первый автомат Р(А)=1-0,05=0,95

Событие В – исправен второй автомат

А∙В – исправны оба

Р(А∙В)=0,95∙0,95=0,9025

Р(А+В)=Р(А)+Р(В)-Р(А)∙Р(В)=0,95+0,95-0,9025=0,9975

Ответ:0,9975 Р(В)=1-0,05=0,95

А+В– хотя бы один исправен

События А и В – совместны.

№ 319172 В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах. Событие А – кофе
Слайд 60

№ 319172 В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Событие А – кофе закончилось в первом автомате Р(А)=0,3

Событие В – кофе закончилось во втором автомате

D – кофе закончилось в двух автоматах

Р=1-Р(С)=0,52 Р(D)=0,12

Р(С)=Р(А)+Р(В)-Р(А)∙Р(В)=0,3+0,3-0,12=0,48

Р(В)=0,3

С– кофе закончится хотя бы в одном из двух

События А и В – независимы

События «кофе закончилось хотя бы в одном» и «осталось в обоих» - противоположны.

Условная вероятность.
Слайд 61

Условная вероятность.

320192 В классе 26 человек, среди них два близнеца  — Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе. Андрей обязательно попал в какую то группу (достоверное событие) Р=1. Теперь в этой группе
Слайд 62

320192 В классе 26 человек, среди них два близнеца  — Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

Андрей обязательно попал в какую то группу (достоверное событие) Р=1

Теперь в этой группе 12 свободных мест и осталось 25 учеников..

Сергей попал в ту же группу Р=12/25

Рассматриваемые события – совместны.

Ответ:0,48

В банке нет, но в некоторых тренировочных работах предлагается На склад поступило 35 холодильников. Известно, что 5 холодильников с дефектами, но неизвестно, какие это холодильники. Найти вероятность того, что два взятых наугад холодильника будут с дефектами. Ответ округлите до сотых. Вероятность то
Слайд 63

В банке нет, но в некоторых тренировочных работах предлагается На склад поступило 35 холодильников. Известно, что 5 холодильников с дефектами, но неизвестно, какие это холодильники. Найти вероятность того, что два взятых наугад холодильника будут с дефектами. Ответ округлите до сотых.

Вероятность того, что первый взятый наугад холодильник имеет дефекты равна 5/35=1/7

Теперь из 34 холодильников 4 имеют дефекты.

Вероятность того, что второй взятый наугад холодильник имеет дефекты при условии, что один с дефектами уже взяли равна 4/34=2/14

Ответ:0,02

Источники: УМК А. Г. Мордкович (профильный уровень) И. Л. Бродский, Р. А. Литвиненко.“Вероятность и статистика.” - М.: Аркти. - 2006. Открытый банк задач. Г. В. Сычева, Н. Б. Гусева “Математика. ГИА. 9 класс” А. Г. Мордкович “Алгебра и начала анализа. Профильный уровень. 10 класс.”. http://www.mccme
Слайд 64

Источники: УМК А. Г. Мордкович (профильный уровень) И. Л. Бродский, Р. А. Литвиненко.“Вероятность и статистика.” - М.: Аркти. - 2006. Открытый банк задач. Г. В. Сычева, Н. Б. Гусева “Математика. ГИА. 9 класс” А. Г. Мордкович “Алгебра и начала анализа. Профильный уровень. 10 класс.”

http://www.mccme.ru/free-books/shen/shen-probability.pdf

http://www.matburo.ru/tvbook_sub.php?p=par14

http://ta-shah.ucoz.ru/load

Список похожих презентаций

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Алгебра событий и основные правила вычисления вероятностей

Алгебра событий и основные правила вычисления вероятностей

Закономерности окружающего мира – 7 класс. Тема 9. Алгебра событий и основные правила вычисления вероятностей. урок на тему. Правило сложения ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Биквадратное уравнение и его корни

Биквадратное уравнение и его корни

Учитель математики Апенькина Наталья Александровна. Конспект урока. Класс – 8. Тема – «Биквадратное уравнение и его корни». Цели урока: . образовательная:. ...
Без слов и грамматики не учат математике

Без слов и грамматики не учат математике

Интегрированный (бинарный) урок по русскому языку и геометрии в 7 классе. ТЕМА УРОКА: «Без слов и грамматики не учат математике». ТИП УРОКА: ...
Арифметический квадратный корень из произведения, степени и дроби

Арифметический квадратный корень из произведения, степени и дроби

Тема: «Арифметический квадратный корень из произведения, степени и дроби». Цели урока:. . Образовательные:. изучить основные свойства квадратных ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...
Верные и неверные равенства и неравенства

Верные и неверные равенства и неравенства

Муниципальное бюджетное образовательное учреждение. средняя общеобразовательная школа №1. . города Ярцева Смоленской области. . Конспект ...
Величины (длина, масса, время, объем) и единицы измерения

Величины (длина, масса, время, объем) и единицы измерения

Математика 3-1-8. . Тема урока. :. Величины (длина, масса, время, объем) и единицы. . измерения. Цели:. повторить единицы измерения массы, ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:Шахова Татьяна Александровна
Содержит:64 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации