Презентация "Сфера. Шар" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8

Презентацию на тему "Сфера. Шар" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 8 слайд(ов).

Слайды презентации

Сфера Шар
Слайд 1

Сфера Шар

Определения. Сфера-это фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии. Шар-это фигура, состоящая из всех точек пространства, находящихся на расстоянии не большем данного от данной точки (или фигура, ограниченная сферой).
Слайд 2

Определения

Сфера-это фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии. Шар-это фигура, состоящая из всех точек пространства, находящихся на расстоянии не большем данного от данной точки (или фигура, ограниченная сферой).

Площадь сферы. Для определения площади сферы воспользуемся понятием описанного многогранника. Многогранник называется описанным около сферы (шара) , если сфера касается всех его граней. При этом сфера называется вписанной в многогранник. Пусть описанный около сферы многогранник имеет n-граней. Будем
Слайд 3

Площадь сферы

Для определения площади сферы воспользуемся понятием описанного многогранника. Многогранник называется описанным около сферы (шара) , если сфера касается всех его граней. При этом сфера называется вписанной в многогранник. Пусть описанный около сферы многогранник имеет n-граней. Будем неограниченно увеличивать n таким образом, чтобы наибольший размер каждой грани стремился к нулю. За площадь сферы примем предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. Можно доказать, что этот предел существует, и получить формулу для вычисления площади сферы радиуса R : S=4ПR2

.. Точка О называется центром сферы, R-радиус сферы. Любой отрезок, соединяющий центр и какую-нибудь точку сферы, называется радиусом сферы. Отрезок, соединяющий две точки сферы и проходящий через её центр, называется диаметром сферы. Плоскость, имеющая со сферой только одну общую точку, называется
Слайд 4

..

Точка О называется центром сферы, R-радиус сферы. Любой отрезок, соединяющий центр и какую-нибудь точку сферы, называется радиусом сферы. Отрезок, соединяющий две точки сферы и проходящий через её центр, называется диаметром сферы.

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы. Теорема: Радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

шар. Граница шара называется шаровой поверхностью или сферой. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Касательная плоскость имеет с шаром только одну общую точ
Слайд 5

шар

Граница шара называется шаровой поверхностью или сферой. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Касательная плоскость имеет с шаром только одну общую точку – точку касания.

Уравнение сферы. В прямоугольной системе координат уравнение сферы радиуса R с центром С (х0;у0;z0) имеет вид (х-х0)2+(у-у0)2+(z-z0)2=R2
Слайд 6

Уравнение сферы

В прямоугольной системе координат уравнение сферы радиуса R с центром С (х0;у0;z0) имеет вид (х-х0)2+(у-у0)2+(z-z0)2=R2

Шаровой сегмент. Шаровым сегментом называется часть шара, отсекаемая от него какой-нибудь плоскостью. Круг, получившийся в сечении, называется основанием каждого из этих сегментов. Объём шарового сегмента
Слайд 7

Шаровой сегмент

Шаровым сегментом называется часть шара, отсекаемая от него какой-нибудь плоскостью. Круг, получившийся в сечении, называется основанием каждого из этих сегментов.

Объём шарового сегмента

Шаровой сектор. Шаровым сектором называется тело, полученное вращением кругового сектора с углом, меньшим 900 ,вокруг прямой, содержащей один из ограничивающих круговой сектор радиусов. Формула нахождения объема шарового сектора
Слайд 8

Шаровой сектор

Шаровым сектором называется тело, полученное вращением кругового сектора с углом, меньшим 900 ,вокруг прямой, содержащей один из ограничивающих круговой сектор радиусов. Формула нахождения объема шарового сектора

Список похожих презентаций

Сфера и шар

Сфера и шар

Сферой называется поверхность, которая состоит из всех точек пространства, находящихся на заданном расстоянии от данной точки. Эта точка называется ...
Тела вращения. Сфера и шар

Тела вращения. Сфера и шар

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. О- центр сферы R- радиус ...
Сфера и шар

Сфера и шар

R O. Определение сферы и её элементов. Сферой называется поверхность, состоящая из точек пространства, расположенных на данном расстоянии (оно называется ...
Сфера и шар

Сфера и шар

План презентации:. Определение сферы, шара. Уравнение сферы. Взаимное расположение сферы и плоскости. Площадь сферы. Итог урока. Окружность и круг. ...
Шар (сфера)

Шар (сфера)

Шар. Шар – тело вращения, образованное в результате вращения полукруга около прямой, содержащей диаметр, который ограничивает полукруг. Шар – тело, ...
Шар

Шар

Как вы думаете, что объединяет все эти объекты? Отгадайте ключевое слово. 1 2 4 5 Т Н У Ф Е Р А С Ж И О Ь Ц К Г Д М. СФЕРА – поверхность шара. радиус ...
Шар

Шар

...
Шар

Шар

R O. Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Данная точка называется ...
Цилиндр. Конус. Шар

Цилиндр. Конус. Шар

ЦИЛИНДР. ОПРЕДЕЛЕНИЕ ЦИЛИНДРА. Цили́ндр (др.-греч. κύλινδρος — валик, каток)‏ Цилиндр - тело, ограниченное цилиндрической поверхностью и двумя кругами ...
Сфера, описанная вокруг многогранника

Сфера, описанная вокруг многогранника

Определение: Многогранник называется вписанным в сферу (вписанным в шар), если все вершины многогранника принадлежат этой сфере. Про сферу в этом ...
Сфера, вписанная в цилиндр

Сфера, вписанная в цилиндр

Упражнение 1. В цилиндр высоты 2 вписана сфера. Найдите ее радиус. Ответ: 1. Упражнение 2. В цилиндр вписана сфера радиуса 1. Найдите высоту цилиндра. ...
Сфера вписанная в многогранник

Сфера вписанная в многогранник

Определение Многогранник называется описанным около сферы(а сфера вписанной в многогранник), если все грани многогранника касаются этой сферы. Следствие ...
Сфера

Сфера

Сфера – это поверхность, состоящая из всех точек пространства,. расположенных на данном расстоянии (R). от данной точки (C). Центр сферы (С) Радиус ...
Сфера

Сфера

1.Сфера и шар. Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. Данная точка ...
Простая геометрия в архитектуре различных эпох и культур

Простая геометрия в архитектуре различных эпох и культур

Архитектура. Уже в XII в. архитектура понимается уже как наука, как знание, как геометрия, имеющая практическое приложение, как деятельность, требующая ...
Поворот и геометрия

Поворот и геометрия

ВСПОМИНАЕМ. Что называют параллельным переносом на заданный вектор? На что при параллельном переносе отображается прямая? Является ли параллельный ...
Построение сечений многогранников геометрия

Построение сечений многогранников геометрия

Обучающая цель: формирование умений и навыков построения сечений. Развивающая цель: формирование и развитие у учащихся пространственного представления. ...
«Ломаная» геометрия

«Ломаная» геометрия

Найдите соответствие. Ответы. Ломаная Тема урока:. Какие из фигур являются ломаными? А Б В Г Д. Ответ А В Г. Кусок проволоки возьми И его ты перегни. ...
Перпендикулярность в пространстве геометрия

Перпендикулярность в пространстве геометрия

Цель:. Познакомиться с перпендикулярностью в пространстве. Проанализировать различные источники по данной теме. Выделить основные подходы к рассмотрению ...
Фракталы – геометрия природы

Фракталы – геометрия природы

Задачи:. узнать, что такое «фракталы»; изучить историю возникновения и развития фрактальной геометрии; ознакомиться с биографией создателя фракталов ...

Конспекты

Длина окружности. Площадь круга. Сфера. Шар

Длина окружности. Площадь круга. Сфера. Шар

Тема: Длина окружности. Площадь круга. Сфера. Шар. Цели урока:. 1. Познакомить учащихся с практическими способами измерения длины окружности и ...
Сфера и шар. Решение задач

Сфера и шар. Решение задач

Конспект урока по геометрии для учащихся 11 класса. Тема:. «. Сфера и шар. Решение задач. ». Цели:. . - образовательные:. повторить изученный ...
Шар

Шар

Силина Виктория Викторовна. учитель математики. . Муниципальное образовательное учреждение средняя общеобразовательная школа №14 городского округа-город ...
Длина окружности. Площадь круга. Шар

Длина окружности. Площадь круга. Шар

Урок № 33. Тема. :. Длина окружности. . Площадь круга. Шар. ЦЕЛЬ:. . Дидактическая. Учащиеся должны научиться:. - Вычислять длину окружности;. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:24 марта 2019
Категория:Математика
Содержит:8 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации