- Тела вращения. Сфера и шар

Презентация "Тела вращения. Сфера и шар" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Тела вращения. Сфера и шар" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

Тела вращения Сфера Шар
Слайд 1

Тела вращения Сфера Шар

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки. О- центр сферы R- радиус сферы АВ- диаметр сферы 2R=АВ
Слайд 2

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки.

О- центр сферы R- радиус сферы АВ- диаметр сферы 2R=АВ

Сферу можно получить вращением полуокружности АСВ вокруг диаметра АВ
Слайд 3

Сферу можно получить вращением полуокружности АСВ вокруг диаметра АВ

Шаром называется тело ограниченное сферой. Центр, радиус и диаметр сферы называются также диаметром шара. Шар
Слайд 4

Шаром называется тело ограниченное сферой. Центр, радиус и диаметр сферы называются также диаметром шара.

Шар

Задана прямоугольная система координат Оху и дана некоторая поверхность F, например плоскость или сфера . Уравнение с тремя переменными x, у, z называется уравнением поверхности F и не удовлетворяют координаты никакой точки , не лежащей на этой поверхности . Уравнение сферы См. далее
Слайд 5

Задана прямоугольная система координат Оху и дана некоторая поверхность F, например плоскость или сфера . Уравнение с тремя переменными x, у, z называется уравнением поверхности F и не удовлетворяют координаты никакой точки , не лежащей на этой поверхности .

Уравнение сферы См. далее

Выведем уравнение сферы радиуса R с центром С (x1; y1; z1). M (x; y; z) -произвольная точка сферы. x z y 0
Слайд 6

Выведем уравнение сферы радиуса R с центром С (x1; y1; z1)

M (x; y; z) -произвольная точка сферы

x z y 0

Расстояние от произвольной точки M (x; y; z)до точки С вычисляем по формуле. МС=√(x-x1)2+(y-y1)2+(z-z1)2
Слайд 7

Расстояние от произвольной точки M (x; y; z)до точки С вычисляем по формуле

МС=√(x-x1)2+(y-y1)2+(z-z1)2

Если точка М лежит на данной сфере , то МС=R, или МС2=R2 т.е. координаты точки М удовлетворяют уравнению: R2=(x-x1)2+(y-y1)2+(z-z1)2. Если точка М не лежит на данной сфере , то МС2= R2 т.е. координаты точки М не удовлетворяют данного уравнения.
Слайд 8

Если точка М лежит на данной сфере , то МС=R, или МС2=R2 т.е. координаты точки М удовлетворяют уравнению: R2=(x-x1)2+(y-y1)2+(z-z1)2

Если точка М не лежит на данной сфере , то МС2= R2 т.е. координаты точки М не удовлетворяют данного уравнения.

В прямоугольной системе координат уравнение сферы радиуса R с центром С (x1; y1; z1) имеет вид. R2=(x-x1)2+(y-y1)2+(z-z1)2
Слайд 9

В прямоугольной системе координат уравнение сферы радиуса R с центром С (x1; y1; z1) имеет вид

R2=(x-x1)2+(y-y1)2+(z-z1)2

Взаимное расположение сферы и плоскости. Исследуем взаимное расположение сферы и плоскости в зависимости от соотношения между радиусом сферы и расстоянием от её центром до плоскости.
Слайд 10

Взаимное расположение сферы и плоскости

Исследуем взаимное расположение сферы и плоскости в зависимости от соотношения между радиусом сферы и расстоянием от её центром до плоскости.

O C R 2 2 dR
Слайд 11

O C R 2 2 dR

Пусть радиус сферы - R, а расстояние от её центра до плоскости a - d. Введём систему координат, так чтобы плоскость Оху совпадала с плоскостью α ,а центр сферы лежал по Оz , тогда уравнение плоскости α :z=0, а уравнение сферы с учётом (С имеет координаты (0;0;d) ) х2+у 2+(z-d)2=R2
Слайд 12

Пусть радиус сферы - R, а расстояние от её центра до плоскости a - d

Введём систему координат, так чтобы плоскость Оху совпадала с плоскостью α ,а центр сферы лежал по Оz , тогда уравнение плоскости α :z=0, а уравнение сферы с учётом (С имеет координаты (0;0;d) ) х2+у 2+(z-d)2=R2

z=0 х2+у 2+(z-d)2=R2. Составим систему уравнений : Подставив z=0 во второе уравнение , получим : х2+у 2=R2-d2
Слайд 13

z=0 х2+у 2+(z-d)2=R2

Составим систему уравнений :

Подставив z=0 во второе уравнение , получим : х2+у 2=R2-d2

Возможны три случая : 1) d0, и уравнение х2+у 2=R2-d2 является уравнением окружности r = √R2-d2 с центром в точке О на плоскости Оху. В данном случае сфера и плоскость пересекаются по окружности.
Слайд 14

Возможны три случая :

1) d0, и уравнение х2+у 2=R2-d2 является уравнением окружности r = √R2-d2 с центром в точке О на плоскости Оху. В данном случае сфера и плоскость пересекаются по окружности.

Итак, если расстояние от центра сферы до плоскости меньше радиуса сферы, то сечение сферы плоскостью есть окружность .
Слайд 15

Итак, если расстояние от центра сферы до плоскости меньше радиуса сферы, то сечение сферы плоскостью есть окружность .

Ясно, что сечение шара плоскостью является круг. Если секущая плоскость проходит через центр шара, то d=0 и в сечении получается круг радиуса R, т.е. круг , радиус которого равен радиусу шара. Такой круг называется большим кругом шара.
Слайд 16

Ясно, что сечение шара плоскостью является круг.

Если секущая плоскость проходит через центр шара, то d=0 и в сечении получается круг радиуса R, т.е. круг , радиус которого равен радиусу шара. Такой круг называется большим кругом шара.

Если секущая плоскость не проходит через центр шара , то d>0 и радиус сечения r = √R2-d2 , меньше радиуса шара . r - радиус сечения
Слайд 17

Если секущая плоскость не проходит через центр шара , то d>0 и радиус сечения r = √R2-d2 , меньше радиуса шара .

r - радиус сечения

2) d=R,тогда R2-d2=0, и уравнению удовлетворяют только х=0, у=0, а значит О(0;0;0)удовлетворяют обоим уравнениям ,т.е. О- единственная общая точка сферы и плоскости .
Слайд 18

2) d=R,тогда R2-d2=0, и уравнению удовлетворяют только х=0, у=0, а значит О(0;0;0)удовлетворяют обоим уравнениям ,т.е. О- единственная общая точка сферы и плоскости .

Итак, если расстояние от центра сферы до плоскости равно радиусу сферы , то сфера и плоскость имеют только одну общую точку.
Слайд 19

Итак, если расстояние от центра сферы до плоскости равно радиусу сферы , то сфера и плоскость имеют только одну общую точку.

3) d>R, тогда R2-d2
Слайд 20

3) d>R, тогда R2-d2

Следовательно, если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек.
Слайд 21

Следовательно, если расстояние от центра сферы до плоскости больше радиуса сферы, то сфера и плоскость не имеют общих точек.

Список похожих презентаций

Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Электрики и математика"

"Электрики и математика"

Воспитательные Воспитание умения работать в команде, уважения к сопернику, воспитание чувства ответственности; Воспитание чувства ответственности, ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Буквенная запись свойств сложения и вычитания

Буквенная запись свойств сложения и вычитания

Муниципальное автономное общеобразовательное учреждение. Чурилковская средняя общеобразовательная школа. Домодедовского района Московской области. ...
Белоснежка и семь гномов

Белоснежка и семь гномов

Муниципальное автономное дошкольное общеобразовательное учреждение. «Детский сад комбинированного вида» №221. Кемеровской области. Конспект ...
Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты

Бинарный урок математики и кубановедения. Проценты. Цель урока:. воспитательные:. - активизация познавательной и творческой деятельности учащихся;. ...
Арифметический квадратный корень и его свойства

Арифметический квадратный корень и его свойства

Тема: «Арифметический квадратный корень и его свойства». Урок-игра «Аукцион математических знаний». Цели урока. :. . Образовательные:. - ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Величины и их соотношения

Величины и их соотношения

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 50 г. Томска. Конспект урока по математике. ...
Вертикальные и смежные углы

Вертикальные и смежные углы

Предмет. : Геометрия. Класс. 7-8. Тема урока. 7 класса: Вертикальные и смежные углы. Тип урока. : изучение нового материала. Цель урока:. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Ф.И.О автора материала. :. Дыда Татьяна Ивановна. Место работы. :. МАОУ СОШ № 18, г. Армавир, Краснодарский край. Должность. :. Учитель математики. ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Разработка урока алгебры 9 класс. по теме :. «Арифметическая и геометрическая прогрессии». Тема урока. : Прогрессио- движение вперед. Цель урока. ...
Алгоритм и его формальное исполнение

Алгоритм и его формальное исполнение

Тема урока: «. Алгоритм и его формальное исполнение. ». Цели:. усвоить что такое алгоритм и каковы его свойства;. . научиться составлять ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 января 2019
Категория:Математика
Содержит:21 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации