- Дифференцирование сложной функции

Конспект урока «Дифференцирование сложной функции» по математике





Государственное областное бюджетное

профессиональное образовательное учреждение

«ЛИПЕЦКИЙ ПОЛИТЕХНИЧЕСКИЙ ТЕХНИКУМ»





Методическая разработка

урока математики

на тему

«Дифференцирование сложной функции».



Выполнил:

преподаватель математики

первой квалификационной категории

Заварзина В.Г.







Липецк 2014 г.


Тема урока:

«Дифференцирование сложной функции».


Цели урока:

1. Образовательные:

а) закрепить навыки распознавания сложных функций и нахождения производных сложных функций;

б) обобщить знания студентов о сложной функции и правиле нахождения производной сложной функции;

в) сформировать умения и навыки использования вычисления производной сложной функции для вычисления различных величин при решении прикладных задач и задач производственной направленности.


2. Развивающие:

а) развитие профессиональных качеств студентов (умений применять полученные знания на практике);

б) развитие познавательных умений и мышления (выделять главное, анализировать, сравнивать, определять и объяснять понятия).


3. Воспитательные:

а) воспитание навыков самостоятельной работы;

б) воспитание дисциплинированности;

в) воспитание эстетических взглядов.


Тип урока: комбинированный


Вид урока: проблемный


Методические приемы:

-самостоятельная работа (работа с раздаточным материалом);

-практический- решение задач производственной и прикладной направленности.


Межпредметные связи: история-электротехника-физика- производственное обучение.


Оборудование и наглядные средства обучения: мультимедийный проектор, интерактивная доска, презентация, демонстрационный и раздаточный материал, задачник “Алгебра и начала математического анализа” (профильный уровень часть 2) под редакцией А. Г. Мордковича .


Методическая цель: активизировать мыслительную деятельность обучающихся.





Ход урока:



I.Организационный момент: Подготовка студентов к уроку (проверка отсутствующих на уроке, наличие тетрадей)



II. Сообщение темы и целей урока.(слайд 1,2)

Эпиграф к уроку : “Просто знать - ещё не всё, знания нужно использовать- Гёте (слайд 3)


Ш. Мотивация.

В наших домах, в транспорте, на заводах - всюду работает электрический ток.

Под электрическим током понимают направленное движение свободных электрически заряженных частиц.

Количественной характеристикой электрического тока является сила тока.

Сегодня на уроке мы применим ваши знания, касающиеся математики и электротехники при решении задач профессиональной направленности .

Задача.

(Преподавателем вводится задача, решение которой приводится в конце урока. )

Заряд, протекающий через проводник, меняется по закону .

Найти силу тока в момент времени t=5 cек. (слайд 4)

IV.Актуализация опорных знаний

Сегодня к уроку нужно было приготовить сообщение о Исааке Ньютоне и Г.В. Лейбнице.

Историческая справка (сообщение обучающегося) (слайд 5-6).

(Фотографии учёных)

(Ответ студента.)

Историческая справка.

Производная – одно из фундаментальных понятий математики.

Оно возникло в 18 веке. Независимо друг от друга И.Ньютон и

Г. Лейбниц разработали теорию дифференциального исчисления.

О Ньютоне.

Был этот мир глубокой тьмой окутан.

Да будет свет! И вот явился Ньютон.

А.Поуг.

Исаак Ньютон (1643-1727) один из создателей дифференциального исчисления.

Ньютоном были изучены все основные вопросы физики и математики, актуальные для его времени.

Ньютон, решая задачи на проведение касательных к кривым, вычисляя площади криволинейных фигур, создает общий метод решения таких задач – метод флюксий (производных). Ньютон вычислял производную и интеграл любой степенной функции. О дифференциальном и интегральном исчислениях ученый подробно пишет в своей самой значительной работе по математике «Метод флюксий» (1670-1671), которая была опубликована уже после его смерти. В ней были заложены основы математического анализа.

О Лейбнице

Готфрид Вильгельм Лейбниц. (1646-1716)

Работы Лейбница составляют фундамент математического анализа.

В основу новой науки он положил понятие дифференциала. Лейбниц дал правила вычисления производной суммы, разности, произведения, дроби.

Лейбниц пришёл к понятию производной, решая задачу проведения касательной к произвольной линии, объяснив этим ее геометрический смысл.

Но это не говорит о том, что до них эти вопросы не изучались. Задолго до этого Архимед не только решил задачу на построение касательной к такой сложной кривой, как спираль, применяя при этом предельные переходы, но и сумел найти максимум функции.

Используя методы дифференциального исчисления, учёные предсказали возвращение кометы Галлея, что было большим триумфом наукиXVIII века.

Необходимо сказать, что Ньютон не дал четкого определения производной. Впервые определение производной было сформулировано французским математиком О.Коши, и именно это определение стало общепринятым и в настоящее время используется почти во всех курсах анализа)






Повторение пройденного материала:

  1. Что называется дифференцированием сложной функции?

Студент: Производная сложной функции равна произведению её производной по промежуточному аргументу на производную этого аргумента по независимой переменной

  1. Назовите формулы для производных элементарных функций.

Студент:

1.

2.

3.

4.

5.

6.

7.

  1. Назовите формулы для производных тригонометрических функций.

Студент:

1.

2.

3.

4.

  1. Назовите правила вычисления производных (слайд 7).

Студент:

Основные правила дифференцирования

Пусть , тогда:



  1. Какая функция является сложной?

(Студент: функции от функций называют сложными функциями.

Пусть функция u=g(x) определена на множестве X и U – множество значений этой функции. Пусть, множество U является областью определения функции y=f(u). Поставим в соответствие каждому x из X число f(g(x)) . Тем самым на множестве X будет задана функция y=f(g(x)). Ее называют композицией функций или сложной функцией.)

  1. Назовите формулу нахождения производной сложной функции.

(слайд 8)

Студент: =

--правило дифференцирования сложной функции.


7. Перед Вами несколько функций.( слайд 9)

Давайте назовём из каких функций состоят следующие функции и найдём их производные.



a) f(x)= tg3x

Решение:


б) y=


Решение:

в) y=

Решение:

г) f(x)=

Решение:

д) f(t)=sin(2t+)

Решение:

8. Теперь перейдем к самостоятельной работе.

Самостоятельная работа.(слайд 10 название)

I Вариант

II Вариант

Найдите производные функций:

Найдите производные функций:

1) y=cos7x

1) y=sin10x

2) y=

2) y=


3) y=


3) y=

4) y=3sinx+

4) y=+4cosx

5) y=

5) y =















Решение примеров из самостоятельной работы.

I Вариант

1) y=cos7x

Решение:



2) y=

Решение:



3) y=

Решение:

4) y=3sinx+

Решение:

5) y=

Решение:

II Вариант

1) y=sin10x

Решение:

2) y=

Решение:

3) y=

Решение:


4) y=+4cosx

Решение:


5) y =

Решение:


V. Решение задач.


Вернёмся к теме нашего сегодняшнего урока.

Производная функции используется всюду, где есть неравномерное протекание процесса: это и неравномерное механическое движение, и переменный ток, и химические реакции и радиоактивный распад вещества и т.д., так как механический смысл производной это .

Мощным средством в математике, физике, механике, электротехнике и других дисциплинах является производная сложной функции – одно из основных понятий математического анализа.


У Вас на столах лежит таблица для нахождения производных физических, электротехнических и математических величин. (слайд11).

Производные функций нашли широкое применение при решении прикладных задач на нахождение силы, мгновенной скорости, силы тока, теплоёмкости и других величин.



1. Сила-- есть производная работы по перемещению.

2.Сила тока I-- есть производная заряда q по времени.

3.Мгновенная скорость– есть производная пути по времени .

4. Теплоемкость – есть производная теплоты по температуре, т.е. C(t) =Q/(t)

Величины

Вычисление производной

А – работа;

F – сила;

N - мощность.

F(x)=A' (x);

N(t)=A' (t).

Q –электрический заряд;

I – сила тока.

I(t)=q' (t)

S –перемещение;

v –скорость.

V(t)=S' (t)

Q –количество теплоты;

с – теплоёмкость.

C(t)=Q' (t)



Давайте с помощью перемещения найдём скорость изменения тока, идущего по проводнику.

Давайте запишем в тетради следующую задачу.

Задача 1.(слайд 12).

Найдите скорость изменения тока, идущего по проводнику, по закону i=2sin(3t + ) в момент времени t=.

Решение: т.к. скорость есть производная от пути по времени , то скорость изменения тока, идущего по проводнику будем находить, как производную от i.

Т.к. i=2sin(3t + )-- сложная функция, то

Находим значение производной в момент времени t=


VI. Закрепление пройденного материала.

Рассмотрим задачу урока.


Задача 2 (слайд 13).

Заряд, протекающий через проводник, меняется по закону .

Найти силу тока в момент времени t=5 cек.

В цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени.

Решение: найдём производную заряда, как производную сложной функции:

Мы нашли силу тока I=2cos(2t-10)

Найдём силу тока в момент времени t=5 cек.

I(5)=2cos()=2cos0=2*1=2



VII.Подведение итогов урока:

Сегодня на уроке мы повторили правила вычисления производных, дифференцирование сложной функции, формулы для вычисления производных, решили задачи на нахождение физических величин, самостоятельно решали задачи на нахождение производных.

Выставление оценок за урок.

VIII.Домашнее задание:

Составить и решить задачу на нахождение силы тока , № 42.2(а-г) из учебника на стр.233. (слайд 14).



Список литературы:



1. Дидактические материалы по алгебре и началам анализа для 10 класса /Б.М. Ивлев, С.М. Саакян, С.И. Шварцбурд. – М.: Просвещение, 2003.

2. Алгебра и начала анализа: Учеб. для 10–11 кл. общеобразовательных учреждений / А.Н. Колмогоров, А.М. Абрамов, Ю.П. Дудницын и др.; Под. ред. А.Н. Колмогорова. – М.: Просвещение, 2004.

3. Алгебра и начала математического анализа. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных . учреждений (профильный уровень)/А.Г. Мордкович и др. ; под редакцией А.Г. Мордковича—7-е изд., стер.—М.: Мнемозина, 2010.

4. Алгебра и начала анализа: Учеб. для 10 кл. общеобразоват. учреждений /С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин. – М.: Просвещение, 2003.

5 Задачи по алгебре и началам анализа: Пособие для учащихся 10–11 кл. общеобразоват. учреждений /С.М. Саакян, А.М. Гольдман, Д.В. Денисов. – М.: Просвещение, 2003.

























Здесь представлен конспект к уроку на тему «Дифференцирование сложной функции», который Вы можете бесплатно скачать на нашем сайте. Предмет конспекта: Математика Также здесь Вы можете найти дополнительные учебные материалы и презентации по данной теме, используя которые, Вы сможете еще больше заинтересовать аудиторию и преподнести еще больше полезной информации.

Список похожих конспектов

Производная сложной функции

Производная сложной функции

Тема: . “Производная . сложной функции. ”. Тип урока: . – урок изучения нового материала. Форма урока. : применение информационных технологий. ...
Производная сложной функции

Производная сложной функции

Открытый урок. . по теме: «Производная сложной функции». . . Тип урока:. комбинированный. Цели:. образовательная:. - формирование умения ...
Степенные функции, их свойства и графики

Степенные функции, их свойства и графики

Тема урока:. . «Степенные функции, их свойства и графики». . Цели урока:. . Образовательная:. Создать условия для закрепления знаний о свойствах ...
Решение уравнений сложной структуры

Решение уравнений сложной структуры

Урок математики в 3 "Решение уравнений сложной структуры". г.Экибастуз. 2014 г. Тема: "Решение уравнений сложной структуры". ...
Производная функции

Производная функции

Производная функции. Обобщающий урок в 10 классе. Т.М. РЕВЯКИНА,. . учитель математики ШЛ №101. Девиз урока:. Решай, ищи, твори и мысли. ...
Признаки возрастания и убывания функции

Признаки возрастания и убывания функции

Султанова Эльмира Хайкеновна. . КГУ «Колледж сферы обслуживания города Петропавловска», СКО г. Петропавловск. . Преподаватель математики. ...
Построение графика квадратичной функции

Построение графика квадратичной функции

План-конспект урока. Тема:. «Построение графика квадратичной функции». Учитель:. Елфимова Н.И. Место работы:. МОУ «СОШ» с.Корткерос. Должность:. ...
Показательные функции, уравнения, неравенства

Показательные функции, уравнения, неравенства

Обобщающий урок. по теме:. Учитель математики филиала. . БОУ ХМАО - Югры В(с)ОШ. при ИР 99/15 г.Нижневатовска. ...
Исследование функции с помощью производной

Исследование функции с помощью производной

Опорный конспект. . «Исследование функции с помощью производной. ». ГАОУ СПО ВПТК. Зотова И.В., преподаватель математики. Найти область ...
Дифференциал функции

Дифференциал функции

План занятия №___6___. ПО ДИСЦИПЛИНЕ. Математика. ПРЕПОДАВАТЕЛЬ. Петухова И.С. ТЕМА:. Дифференциал функции. . . ЦЕЛИ:. . Проверить степень ...
Графический способ задания функции

Графический способ задания функции

Тема: Графический способ задания функции. . Цели:. . 1) Совершенствовать навыки построения графиков функций, используя таблицу. 2) Уметь по графику ...
График функции у = ах2+вх+с

График функции у = ах2+вх+с

График функции у = ах2+вх+с. 1.Закрепить знания, умения, навыки построения графиков,. Подготовиться к контрольной работе. . . 2.Развивать мыслительные ...
График функции y= а(x-x0)2 + y0

График функции y= а(x-x0)2 + y0

Урок : График функции. y= а(x-. x. 0. ). 2. +. y. 0. . (2 часа). Тип урока:. урок-практикум. Оборудование и материалы:. интерактивная доска, ...
График функции

График функции

. Муниципальное общеобразовательное учреждение. . Андреапольская средняя общеобразовательная школа №2. г. Андреаполя Тверской области. ...
Функции. Тригонометрические функции

Функции. Тригонометрические функции

Учитель математики ГБОУ СОШ № 230 с углубленным изучением химии и биологии. Ваганова Г. В. Тема. :. . « Функции. Тригонометрические ...
Вычисление пределов функции

Вычисление пределов функции

План урока. Тема: «Вычисление пределов функции». Тип урока. – практическая работа. Цель:. закрепить и усовершенствовать практические приемы ...
Как построить график функции у =f(x+l)+m, если известен график функции у =f(x)

Как построить график функции у =f(x+l)+m, если известен график функции у =f(x)

Урок «Как построить график функции у =. f. (. x. +. l. )+. m. , если известен график функции у =. f. (. x. ). 8А класс. Учитель Бобунова В.В. МОУ ...
Построение графика квадратичной функции

Построение графика квадратичной функции

ПЛАН-КОНСПЕКТ УРОКА Построение графика квадратичной функции. . ФИО (полностью). . Мурадова О.Р. . . . Место работы. . ...
Критические точки функции, максимумы и минимумы

Критические точки функции, максимумы и минимумы

Тема:. «Критические точки функции, максимумы и минимумы». Знать: определения точек максимума и минимума функции; необходимое и достаточное условие ...
Предел функции в точке, свойства. Бесконечно большие и бесконечно малые функции. Непрерывность функции

Предел функции в точке, свойства. Бесконечно большие и бесконечно малые функции. Непрерывность функции

Министерство образования и науки Самарской области. . ГБОУ СПО «Безенчукский аграрный техникум». Конспект занятия. ТЕМА. Предел функции ...

Информация о конспекте

Ваша оценка: Оцените конспект по шкале от 1 до 5 баллов
Дата добавления:7 мая 2019
Категория:Математика
Поделись с друзьями:
Скачать конспект