- Математические фокусы

Презентация "Математические фокусы" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31
Слайд 32
Слайд 33
Слайд 34
Слайд 35

Презентацию на тему "Математические фокусы" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 35 слайд(ов).

Слайды презентации

Презентация. Ученика 5 «А» класса СОШ №9 г. Гатчина. Жабрёва Ильи
Слайд 1

Презентация

Ученика 5 «А» класса СОШ №9 г. Гатчина

Жабрёва Ильи

Математические фокусы. 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1
Слайд 2

Математические фокусы

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1

Введение. Магия не обязательно подразумевает ловкость рук. Можно использовать математику с ее логическими механизмами. Возможности чисел безграничны и могут привести любого в замешательство! Математические фокусы имеют свою особую прелесть. Они очень увлекательно демонстрируют математические законом
Слайд 3

Введение

Магия не обязательно подразумевает ловкость рук. Можно использовать математику с ее логическими механизмами. Возможности чисел безграничны и могут привести любого в замешательство! Математические фокусы имеют свою особую прелесть. Они очень увлекательно демонстрируют математические закономерности. Фокусы или ещё их можно назвать эксперименты, основанные на математике, на свойствах фигур и чисел и лишь облеченные в несколько необычную форму. И понять суть того или иного эксперимента — это значит понять пусть небольшую, но точную математическую закономерность. В математических же фокусах изящество математических построений соединяется с занимательностью.

В математических экспериментах для достижения, эффективности и занимательности как можно хитрее маскируют загадку. Именно поэтому, вместо отвлеченных чисел часто используются различные предметы или наборы предметов, связанные с числами: домино, спички, часы, календарь, монеты и даже карты. Математич
Слайд 4

В математических экспериментах для достижения, эффективности и занимательности как можно хитрее маскируют загадку. Именно поэтому, вместо отвлеченных чисел часто используются различные предметы или наборы предметов, связанные с числами: домино, спички, часы, календарь, монеты и даже карты. Математические фокусы многим нравятся больше всего по нескольким причинам: 1. Для таких фокусов не нужен большой реквизит; 2. Довольно просты в обращении; 3. Не требуют больших навыков; 4. Производят большое впечатление на зрителей.

Фокусы. Карточки с числами и отверстиями Таинственная девятка Фокус с тремя шашками на шахматной доске Фокус с шестью квадратиками Таинственные квадраты Квадраты из четырёх частей Быстрое извлечение кубического корня Угадай задуманное число Угадай зачеркнутую цифру или феноменальная память
Слайд 5

Фокусы

Карточки с числами и отверстиями Таинственная девятка Фокус с тремя шашками на шахматной доске Фокус с шестью квадратиками Таинственные квадраты Квадраты из четырёх частей Быстрое извлечение кубического корня Угадай задуманное число Угадай зачеркнутую цифру или феноменальная память

Карточки с числами и отверстиями. Я не знаю, когда появилось первое специальное приспособление математического характера, предназначенное для демонстрации фокуса, или каким оно было, но кажется несомненным, что одним из самых старых фокусов, в котором оно могло потребоваться, был фокус с узнаванием
Слайд 6

Карточки с числами и отверстиями

Я не знаю, когда появилось первое специальное приспособление математического характера, предназначенное для демонстрации фокуса, или каким оно было, но кажется несомненным, что одним из самых старых фокусов, в котором оно могло потребоваться, был фокус с узнаванием задуманного им числа при помощи серии карточек с числами. Этот фокус показывается при помощи серии карточек (обычно их бывает шесть или больше), на каждой из которых имеется ряд чисел.

Зритель рассматривает все карточки и передаёт фокуснику те из них, на которых имеется задуманное им число. Фокусник кладёт их друг на друга и накрывает «волшебной» карточкой. Теперь, чтобы получить задуманное число, нужно сложить числа, видимые через отверстия. Отверстия в «волшебной» карточке соотв
Слайд 7

Зритель рассматривает все карточки и передаёт фокуснику те из них, на которых имеется задуманное им число. Фокусник кладёт их друг на друга и накрывает «волшебной» карточкой. Теперь, чтобы получить задуманное число, нужно сложить числа, видимые через отверстия. Отверстия в «волшебной» карточке соответствуют местам, где на шести карточках расположены ключевые числа, а на каждой из шести карточек отверстия сделаны в тех же местах, что и на магической карточке, за исключением одного, где проставлено ключевое число данной карточки.

назад
Слайд 8

назад

Таинственная девятка. Двенадцать или более монет размещаются на столе в форме девятки.
Слайд 9

Таинственная девятка

Двенадцать или более монет размещаются на столе в форме девятки.

Фокусник стоит, повернувшись спиной к зрителям. Кто-нибудь из зрителей задумывает число, больше числа монет в «ножке» девятки, и начинает отсчитывать снизу вверх по ножке и, далее, по колечку против часовой стрелки, пока не дойдёт до задуманного числа.
Слайд 10

Фокусник стоит, повернувшись спиной к зрителям. Кто-нибудь из зрителей задумывает число, больше числа монет в «ножке» девятки, и начинает отсчитывать снизу вверх по ножке и, далее, по колечку против часовой стрелки, пока не дойдёт до задуманного числа.

Затем он снова считает от единицы до задуманного числа, начав с монеты, на которой остановился, но на этот раз по часовой стрелке и только вокруг колечка. Под монету, на которой закончился счет, прячется маленький кусочек бумажки. Показывающий поворачивается к столу и сразу же приподнимает монету.
Слайд 11

Затем он снова считает от единицы до задуманного числа, начав с монеты, на которой остановился, но на этот раз по часовой стрелке и только вокруг колечка. Под монету, на которой закончился счет, прячется маленький кусочек бумажки. Показывающий поворачивается к столу и сразу же приподнимает монету.

ОБЪЯСНЕНИЕ Независимо от того, какое число было задумано, счет заканчивается всегда на одной и той же монете. А именно, чет оканчивается на той монете, которая окажется последней, если ножку девятки монета за монетой накладывать на кольцо по часовой стрелке, начиная от монеты, следующей (по часовой
Слайд 12

ОБЪЯСНЕНИЕ Независимо от того, какое число было задумано, счет заканчивается всегда на одной и той же монете. А именно, чет оканчивается на той монете, которая окажется последней, если ножку девятки монета за монетой накладывать на кольцо по часовой стрелке, начиная от монеты, следующей (по часовой стрелке) за той, к которой подходит ножка.

Фокус с тремя шашками на шахматной доске. Пока показывающий стоит, отвернувшись от доски, зритель берёт три шашки и расставляет их на доске либо по диагонали, отмеченной на рисунке
Слайд 13

Фокус с тремя шашками на шахматной доске

Пока показывающий стоит, отвернувшись от доски, зритель берёт три шашки и расставляет их на доске либо по диагонали, отмеченной на рисунке

тремя буквами «А», либо на противоположной диагонали, отмеченной тремя буквами «Б», и начинает передвигать их, произнося про себя буквы своего имени или фамилии (или и те и другие).
Слайд 14

тремя буквами «А», либо на противоположной диагонали, отмеченной тремя буквами «Б», и начинает передвигать их, произнося про себя буквы своего имени или фамилии (или и те и другие).

При этом на каждую букву должен приходиться только один ход, который можно делать любой шашкой в любом направлении на одну клетку (шашки передвигаются только по светлым полям). После того как вся фамилия будет произнесена, зритель может повторить всю процедуру ещё несколько раз, опять – таки выбирая
Слайд 15

При этом на каждую букву должен приходиться только один ход, который можно делать любой шашкой в любом направлении на одну клетку (шашки передвигаются только по светлым полям). После того как вся фамилия будет произнесена, зритель может повторить всю процедуру ещё несколько раз, опять – таки выбирая шашки наугад. После этого показывающий поворачивается к зрителям и, мельком взглянув на доску, объявляет, с какого угла зритель начинал передвигать шашки: с левого верхнего или правого нижнего.

ОБЪЯСНЕНИЕ Имя и фамилия, которые нужно побуквенно произносить про себя, должны состоять из четного числа букв. Если имя и фамилия зрителя содержат такое число букв, можно брать как то, так и другое. Если четное число букв имеет только одно из таких слов, то предложите произносить именно это слово.
Слайд 16

ОБЪЯСНЕНИЕ Имя и фамилия, которые нужно побуквенно произносить про себя, должны состоять из четного числа букв. Если имя и фамилия зрителя содержат такое число букв, можно брать как то, так и другое. Если четное число букв имеет только одно из таких слов, то предложите произносить именно это слово. Если, наконец, оба слова состоят из нечетного количества букв, то они должны произноситься друг за другом (так как сумма двух нечетных чисел четна). Повернувшись к зрителям и взглянув на доску, обратите внимание на вертикальные четные ряды, считая из занумерованными, как на рисунке. Если в этих рядах окажется всего четное число шашек (т.е. две или ни одной), то вначале шашки стояли в правом нижнем углу, в противном случае – в левом верхнем.

Фокус с шестью квадратиками. Вот фокус, в котором прикосновения к предмета сопровождаются побуквенным произношением чисел. Показывается он на шести небольших, раскрашенных в различные цвета, квадратных пластинках, на каждой из которых изображено число.
Слайд 17

Фокус с шестью квадратиками

Вот фокус, в котором прикосновения к предмета сопровождаются побуквенным произношением чисел. Показывается он на шести небольших, раскрашенных в различные цвета, квадратных пластинках, на каждой из которых изображено число.

Пластинки раскладываются на столе числами вниз. Показывающий отворачивается, а зритель в это время приподнимает одну пластинку, смотрит на число, а затем смешивает её с остальными. Теперь показывающий поворачивается к столу и начинает притрагиваться карандашом к пластинкам. Зритель же в это время пр
Слайд 18

Пластинки раскладываются на столе числами вниз. Показывающий отворачивается, а зритель в это время приподнимает одну пластинку, смотрит на число, а затем смешивает её с остальными. Теперь показывающий поворачивается к столу и начинает притрагиваться карандашом к пластинкам. Зритель же в это время произносит про себя побуквенно своё число так, чтобы на каждое прикосновение приходилось по одной букве. Когда все буквы замеченного числа будут исчерпаны, он произносит: «стоп». Пластинка, на которой остановился карандаш, переворачивается, причём оказывается, что на неё как раз и есть задуманное число.

ОБЪЯСНЕНИЕ Первые шесть прикосновений делаются в произвольном порядке. Следующие шесть – в такой последовательности: 101, 42, 45, 13, 16, 19. Показывающему нетрудно будет выдержать этот порядок, запомнив соответствующую последовательность цветов. Конечно, этот фокус получается благодаря тому, что за
Слайд 19

ОБЪЯСНЕНИЕ Первые шесть прикосновений делаются в произвольном порядке. Следующие шесть – в такой последовательности: 101, 42, 45, 13, 16, 19. Показывающему нетрудно будет выдержать этот порядок, запомнив соответствующую последовательность цветов. Конечно, этот фокус получается благодаря тому, что запись числа 101 (сто один) содержит семь букв, а запись, а запись каждого из следующих чисел – одной буквой больше

Таинственные квадраты. Фокусник стоит, повернувшись спиной к зрителям, а один из них выбирает на помесячном табель - календаре любой месяц и отмечает на нем какой-нибудь квадрат, содержащий 9 чисел.
Слайд 20

Таинственные квадраты

Фокусник стоит, повернувшись спиной к зрителям, а один из них выбирает на помесячном табель - календаре любой месяц и отмечает на нем какой-нибудь квадрат, содержащий 9 чисел.

После этого зритель называет фокуснику наименьшее из них, чтобы последний тут же, после быстрого подсчета, объявил сумму этих девяти чисел. Секрет фокуса прост.
Слайд 21

После этого зритель называет фокуснику наименьшее из них, чтобы последний тут же, после быстрого подсчета, объявил сумму этих девяти чисел. Секрет фокуса прост.

Фокуснику нужно прибавить к названному числу 8 и результат умножить на 9. Если m - наименьшее число в указанном квадрате, то весь квадрат имеет вид и сумма всех чисел квадрата равна 9m + 72 = 9(m + 8).
Слайд 22

Фокуснику нужно прибавить к названному числу 8 и результат умножить на 9. Если m - наименьшее число в указанном квадрате, то весь квадрат имеет вид и сумма всех чисел квадрата равна 9m + 72 = 9(m + 8).

Квадраты из четырёх частей Нужно разрезать квадрат на четыре части одинаковой формы и размера а затем составить их по-новому так, как показано на рисунке.
Слайд 23

Квадраты из четырёх частей Нужно разрезать квадрат на четыре части одинаковой формы и размера а затем составить их по-новому так, как показано на рисунке.

При этом получается квадрат, размеры которого кажутся не изменившимися и в то же время с отверстием посередине. Подобным же образом можно разрезать прямоугольник с любым соотношением длин сторон. Любопытно, что точка А, в которой пересекаются две взаимно перпендикулярные линии разреза, может при это
Слайд 24

При этом получается квадрат, размеры которого кажутся не изменившимися и в то же время с отверстием посередине. Подобным же образом можно разрезать прямоугольник с любым соотношением длин сторон. Любопытно, что точка А, в которой пересекаются две взаимно перпендикулярные линии разреза, может при этом находиться в любом месте внутри прямоугольника. Этот парадокс отличается сравнительной простотой, однако он много теряет благодаря тому, что даже при поверхностном изучении видно, что стороны второго прямоугольника должны быть немного больше, чем стороны первого.

Более сложный способ разрезания квадрата на четыре части, при котором получается внутреннее отверстие, изображен на рисунке Он основан на парадоксе с шахматной доской. При перераспределении частей две из них нужно перевернуть обратной стороной кверху. При отбрасывании части А мы получаем прямоугольн
Слайд 25

Более сложный способ разрезания квадрата на четыре части, при котором получается внутреннее отверстие, изображен на рисунке Он основан на парадоксе с шахматной доской. При перераспределении частей две из них нужно перевернуть обратной стороной кверху. При отбрасывании части А мы получаем прямоугольный треугольник, составленный из трёх частей, внутри которого можно образовать отверстие.

Быстрое извлечение кубического корня Демонстрация фокуса с извлечением кубического корня начинается с того, что кого-нибудь из присутствующих просят взять любое число от 1 до 100, возвести его в куб и сообщить результат. После этого показывающий мгновенно называет кубический корень из названного чис
Слайд 26

Быстрое извлечение кубического корня Демонстрация фокуса с извлечением кубического корня начинается с того, что кого-нибудь из присутствующих просят взять любое число от 1 до 100, возвести его в куб и сообщить результат. После этого показывающий мгновенно называет кубический корень из названного числа. Для того, чтобы показывать этот фокус, нужно сначала выучить кубы чисел от 1 до 10: 1 - 1 6 - 216 2 - 8 7 - 343 3 - 27 8 - 512 4 - 64 9 - 729 5 - 125 10 - 1000

При изучении этой таблицы обнаруживается , что все цифры, на которые оканчиваются кубы, различны, причём во всех случаях, за исключением 2 и 3, а также 7 и 8, последняя цифра куба совпадает с числом, возводимым в куб. В исключительных же случаях последняя цифра куба равна разности между 10 и числом,
Слайд 27

При изучении этой таблицы обнаруживается , что все цифры, на которые оканчиваются кубы, различны, причём во всех случаях, за исключением 2 и 3, а также 7 и 8, последняя цифра куба совпадает с числом, возводимым в куб. В исключительных же случаях последняя цифра куба равна разности между 10 и числом, возводимым в куб. Приведём пример Пусть зритель, возводя некоторое число в куб, получил, например, 250047. Последняя цифра этого числа 7, из этого следует, что последней цифрой кубического корны должна быть 3.

Первую цифру кубического корня находим следующим образом. Зачеркнём последние три цифры куба (независимо от количества его цифр) и рассмотрим цифры, стоящие впереди - в данном случае - это 250. Число 250 располагается в таблице кубов между кубами шестёрки и семёрки. Меньшая из этих цифр – в нашем сл
Слайд 28

Первую цифру кубического корня находим следующим образом. Зачеркнём последние три цифры куба (независимо от количества его цифр) и рассмотрим цифры, стоящие впереди - в данном случае - это 250. Число 250 располагается в таблице кубов между кубами шестёрки и семёрки. Меньшая из этих цифр – в нашем случае - 6 и будет первой цифрой кубического корня. Поэтому правильным ответом будет 63. Ещё один пример Пусть названо число 19683. Его последняя цифра 3 указывает, что последней цифрой кубического корня будет 7. Зачеркивая последние три цифры, получаем число 19, которое лежит между кубом двойки и кубом тройки. Меньшим из этих чисел будет 2, поэтому, искомым корнем будет 27.

Угадай задуманное число Как ни странно, но очень часто этот фокус проходит в таком примитивном варианте. Вы просите задумать число, затем прибавить к нему два и из суммы отнять задуманное число. В результате получите число 2. Можете проделать с этим числом несколько манипуляций (например, умножить н
Слайд 29

Угадай задуманное число Как ни странно, но очень часто этот фокус проходит в таком примитивном варианте. Вы просите задумать число, затем прибавить к нему два и из суммы отнять задуманное число. В результате получите число 2. Можете проделать с этим числом несколько манипуляций (например, умножить на 2, потом разделить на 4 и т.д.). Затем к полученному результату, который вы знаете, заставляете прибавить задуманное число и просите назвать сумму. Естественно, вы сразу даете ответ. Этот фокус можно оформить как фокус на предсказание результата. В этом случае вы не просите прибавить задуманное число, а сразу называете результат.

Приведем более совершенные варианты этого фокуса Фокус 1 Предлагаете участнику написать любое трехзначное число с условием, чтобы его первая и последняя цифры были различны. Пусть это число он перепишет в обратном порядке, а затем вычтет из большего числа меньшее. Теперь разность надо тоже переписат
Слайд 30

Приведем более совершенные варианты этого фокуса Фокус 1 Предлагаете участнику написать любое трехзначное число с условием, чтобы его первая и последняя цифры были различны. Пусть это число он перепишет в обратном порядке, а затем вычтет из большего числа меньшее. Теперь разность надо тоже переписать в обратном порядке и сложить эти два числа. Пусть теперь участник задумает какое-то число, сложит его с полученной суммой и объявит вам результат. Вы угадываете задуманное число. Секрет фокуса В результате манипуляций с трехзначным числом получится число 1089.

541-145=396 396+693=1089 1089+54=1143 1143-1089=54
Слайд 31

541-145=396 396+693=1089 1089+54=1143 1143-1089=54

Фокус 2 Вы просите зрителя задумать какое-то число. Пусть к этому числу он прибавит число лет, которое ему осталось до 100-летнего юбилея. К этой сумме пусть зритель добавит число людей, присутствующих на данном фокусе, включая его самого и фокусника, а затем отнимет число окон в комнате, где проход
Слайд 32

Фокус 2 Вы просите зрителя задумать какое-то число. Пусть к этому числу он прибавит число лет, которое ему осталось до 100-летнего юбилея. К этой сумме пусть зритель добавит число людей, присутствующих на данном фокусе, включая его самого и фокусника, а затем отнимет число окон в комнате, где проходит фокус. Пусть к этой разности он добавит свой возраст и сообщит результат. Вы угадываете задуманное число. Секрет фокуса Сумма возраста и числа лет до столетнего юбилея всегда равна 100. Число людей, присутствующих на фокусе, и число окон в комнате вы знаете. Так что результат разности вам известен.

Угадай зачеркнутую цифру или феноменальная память Многие слышали, что гораздо легче выучить наизусть большую поэму, чем запомнить ряд многозначных чисел. Для меня такое запоминание является простым и лёгким. Напишем на доске десять многозначных чисел: 1) 3751428267; 2) 92504970; 3) 875866734; 4) 113
Слайд 33

Угадай зачеркнутую цифру или феноменальная память Многие слышали, что гораздо легче выучить наизусть большую поэму, чем запомнить ряд многозначных чисел. Для меня такое запоминание является простым и лёгким. Напишем на доске десять многозначных чисел: 1) 3751428267; 2) 92504970; 3) 875866734; 4) 11342040723; 5) 4863541275; 6) 962987157; 7) 21012043122; 8) 735183; 9) 351834959736; 10) 51624372546. Ни одно из них, как видите, не повторяется - все они разные.

Я запомнил числа, пока писал. Если хотите проверить, завяжите мне глаза. Из любого числа вычеркните какую угодно цифру, а потом, не торопясь, назовите мне все цифры, которые остались. Я вам скажу по памяти, какая цифра вычеркнута. Секрет фокуса прост! Не нужно обладать исключительной память, чтобы п
Слайд 34

Я запомнил числа, пока писал. Если хотите проверить, завяжите мне глаза. Из любого числа вычеркните какую угодно цифру, а потом, не торопясь, назовите мне все цифры, которые остались. Я вам скажу по памяти, какая цифра вычеркнута. Секрет фокуса прост! Не нужно обладать исключительной память, чтобы показать этот фокус, построенный на простом расчёте. Все написанные числа обладают одинаковым свойством: сумма цифр каждого числа делится на 9 без остатка. Когда вам называют все цифры любого числа без одной, вы складываете их в уме и результат вычитаете из ближайшего большего числа, которое делится без остатка на 9. Получившаяся разница и будет показывать вычеркнутую цифру.

Предположим, из пятого числа вычеркнута цифра 7. Сложив в уме оставшиеся цифры, которые вам называют, вы получаете 38. Ближайшее большее число, которое без остатка делится на 9, есть 45. Вычтя 38 из 45, получаете 7. Это и есть вычеркнутая цифра. Вы можете написать на доске любые числа, зная свойство
Слайд 35

Предположим, из пятого числа вычеркнута цифра 7. Сложив в уме оставшиеся цифры, которые вам называют, вы получаете 38. Ближайшее большее число, которое без остатка делится на 9, есть 45. Вычтя 38 из 45, получаете 7. Это и есть вычеркнутая цифра. Вы можете написать на доске любые числа, зная свойство, которым они должны обладать. Если вы включаете в число цифры 9 или 0, то напишите каждую из них дважды. Иначе вы не отгадаете, какая цифра вычеркнута.

Список похожих презентаций

Математические ребусы

Математические ребусы

Вопрос 1 ОТВЕТ точка. Вопрос 2 стереометрия. Вопрос 3 ПРОИЗВЕДЕНИЕ. Вопрос 4 ШКОЛА ш1А. Вопрос 5 ЗАДАЧА. Вопрос 6 ВЫРАЖЕНИЕ. Вопрос 7 ТРЕУГОЛЬНИК. ...
Математические ребусы

Математические ребусы

я о = а ё = е ь ,,. . н 2 о. ....а = и. а. л = р е = и уз. в. е к. . Последний ребус. касательная назад. конус. . хорда. аксиома. апофема. пирамида. ...
Математические побеги на древе русского языка

Математические побеги на древе русского языка

«Язык обогащается с развитием идей, и одна и та же внешняя оболочка слова обрастает побегами новых значений и смыслов…» В.В. Виноградов. Жизнь людей ...
Математические понятия и методика их изучения в школьном курсе математики

Математические понятия и методика их изучения в школьном курсе математики

План. Математические понятия (сведения из логики) Сущность математических понятий; Логические характеристики понятий: содержание, объем; Пути конструирования ...
Математические оптимизационные модели и методы на основе вариационного исчисления

Математические оптимизационные модели и методы на основе вариационного исчисления

Структура оптимизационной модели. целевая функция критерий оптимальности область допустимых решений и системы ограничений, определяющими эту область. ...
Математические основы описания результатов исследования

Математические основы описания результатов исследования

Таблица исходных данных. Группировка данных. Группировка — процесс систематизации и упорядочивания данных с целью извлечения содержащейся в них информации ...
Математические загадки

Математические загадки

Проблема исследования:. Узнать как можно больше пословиц, в которых содержатся числа и цифры. Объект исследования: Русские народные пословицы и поговорки. ...
Математические модели

Математические модели

Повторим ! 1. Модели, включающие набор свойств, содержащий всю необходимую информацию об исследуемом объекте, называют информационными. 2. Объект, ...
Математические диктанты

Математические диктанты

Понапрасну не болтай, Рассуждай и убеждай. Здесь не нужен шум и гам, Ты решай задания сам. Если же не сможешь вдруг, Пусть придёт на помощь друг. ...
Математические загадки

Математические загадки

ПРОГРЕССИЯ Задача очень непростая: Как сделать, чтобы быстро От единицы и до ста Сложить в уме все числа? Пять первых связок изучи — Найдешь к решению ...
Математические диктанты

Математические диктанты

Ребята ! Выполните все задания математического диктанта и запишите ответы в строчку. Чтобы проверить, правильность выполнения диктанта, нужно нажать ...
Математические действия со смешанными числами

Математические действия со смешанными числами

1.Назовите дроби в том порядке, как они расположены на координатном луче: а) б). 2. Назовите дробную часть чисел в виде неправильной дроби, уменьшив ...
Математические гонки

Математические гонки

Цель:. Отработка навыка использования знаний в нестандартной ситуации. Задачи. обучающие: проверить вычислительные навыки. развивающие: 1.Развитие ...
Математические головоломки

Математические головоломки

Помогите Незнайке разгадать математические ребусы. Ребусы. Задачи на смекалку. Надо разделить поровну 4 яблока между 13 детьми. Как лучше всего это ...
Математические задания

Математические задания

МАТЕМАТИЧЕСКОЕ ПУТЕШЕСТВИЕ. ШЕСТИКЛАСНИКОВ. МАРШРУТ ПУТЕШЕСТВИЯ. ЛАБИРИНТЫ ЗАДАЧИ ТАНГРАМ МАТЕМАТИЧЕСКИЕ ШАГОСЛОВЫ РОСЧЕРКИ СЛОВА С МАТЕМАТИЧЕСКОЙ ...
Математические методы проверки гипотез

Математические методы проверки гипотез

Гипотеза – это…. Гипотеза исследования. Теоретическая: объясняет причины и внутренние закономерностей эмпирически исследуемых явлений. Эмпирическая: ...
Математические задачи от русских, советских и зарубежных писателей

Математические задачи от русских, советских и зарубежных писателей

Можно ли изучать математику в школе, используя произведения русских, советских и зарубежных писателей? «Гуманитарные науки... только тогда будут удовлетворять ...
Математические неожиданности

Математические неожиданности

Цель: изучить свойства топологии на примере листа Мебиуса. Предмет: превращение листа Мебиуса в зависимости от поставленных экспериментов. Объект: ...
Математические знания древнего Египта

Математические знания древнего Египта

Папирус Ахмеса (или папирус Ринда). Иероглифы изображения чисел в Древнем Египте. 100000 10000 1000 100 10 | 1 1000000. Египтяне писали справа налево ...
Математические основы баз данных и знаний

Математические основы баз данных и знаний

Лекция 4 Базисные средства манипулирования реляционными данными: реляционная алгебра Кодда 1. Обзор реляционной алгебры Кодда 2. Особенности теоретико-множественных ...

Конспекты

Математические фокусы

Математические фокусы

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «ЗИМЕНКОВСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА». Игра. . "Математические ...
Математические старты

Математические старты

«Математические старты». для 6 классов. Задачи:. . формировать интерес к математике, товарищеское доброжелательное отношение к членам команды ...
Математические приключения

Математические приключения

Конспект урока-путешествия по математике в 1 классе. Ляленкова Оксана Сергеевна,. учитель начальных классов. МБОУ СОШ № 20 Краснодарского края ...
Математические приключения с Лунтиком

Математические приключения с Лунтиком

Муниципальное бюджетное общеобразовательное учреждение. . Киселевского городского округа. «Средняя общеобразовательная школа №30». ...
Математические острова

Математические острова

МБДОУ МО «Детский сад компенсирующего вида № 76». Конспект урока математики «Математические острова». . ...
Математические заморочки

Математические заморочки

Внеклассное мероприятие. игра «Математические заморочки». (для учащихся 8-х классов общеобразовательной школы). Разработала. учитель математики ...
Математические доводы в защиту леса

Математические доводы в защиту леса

Уразова Анна Валериевна. Учитель математики. МКОУ Верхнехавская средняя общеобразовательная школа №1. Верхнехавского муниципального района Воронежской ...
Математические диктанты

Математические диктанты

Брюханова Татьяна Владимировна,. учитель МОБУ СОШ № 21. г. Белорецк, Республики Башкортостан. Математические диктанты в 1 классе. Математические ...
Математические джунгли

Математические джунгли

Гольцман Юлия Петровна. учитель начальных классов,. средняя школа №45,. . г. Астана. КВН «Математические джунгли». Цели:. закрепить и ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:20 сентября 2018
Категория:Математика
Содержит:35 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации