- Теорема Менелая и теорема Чевы

Презентация "Теорема Менелая и теорема Чевы" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20

Презентацию на тему "Теорема Менелая и теорема Чевы" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 20 слайд(ов).

Слайды презентации

Теорема Менелая и теорема Чевы в школьном курсе математики. «Все незначительное нужно, Чтобы значительному быть…» И. Северянин. Работа учителя математики Колиной Н.К., МБОУ сош№17,г.Заволжье Нижегородской области
Слайд 1

Теорема Менелая и теорема Чевы в школьном курсе математики

«Все незначительное нужно, Чтобы значительному быть…» И. Северянин

Работа учителя математики Колиной Н.К., МБОУ сош№17,г.Заволжье Нижегородской области

Содержание. Теоретические основы Теорема Чевы Теорема Менелая Методические рекомендации Методика обучения решению задач в период предпрофильной подготовки Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса Применение теорем Менелая и Чевы в решении стереометрических задач
Слайд 2

Содержание

Теоретические основы Теорема Чевы Теорема Менелая Методические рекомендации Методика обучения решению задач в период предпрофильной подготовки Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса Применение теорем Менелая и Чевы в решении стереометрических задач

Теорема Чевы. Пусть в ∆ABC на сторонах BC,AC,AB или их продолжениях взяты соответственно точки A1, B1 и C1,не совпадающие с вершинами треугольника. Прямые A A1, BB1 и CC1 пересекаются в одной точке или параллельны тогда и только тогда, когда выполняется равенство
Слайд 3

Теорема Чевы

Пусть в ∆ABC на сторонах BC,AC,AB или их продолжениях взяты соответственно точки A1, B1 и C1,не совпадающие с вершинами треугольника. Прямые A A1, BB1 и CC1 пересекаются в одной точке или параллельны тогда и только тогда, когда выполняется равенство

Теорема Менелая. Пусть на сторонах AB, BC и на продолжении стороны AC (либо на продолжениях сторон AB,BC и AC) ∆ABC взяты соответственно точки C1,A1 и B1, не совпадающие с вершинами ∆ABC . Точки A1, B1, C1 лежат на одной прямой тогда и только тогда, когда выполняется равенство
Слайд 4

Теорема Менелая

Пусть на сторонах AB, BC и на продолжении стороны AC (либо на продолжениях сторон AB,BC и AC) ∆ABC взяты соответственно точки C1,A1 и B1, не совпадающие с вершинами ∆ABC . Точки A1, B1, C1 лежат на одной прямой тогда и только тогда, когда выполняется равенство

Методика обучения решению задач в период предпрофильной подготовки. 1. Теорема Менелая и пропорциональные отрезки в треугольнике. 2. Теорема Чевы и ее следствия. Применение теорем Чевы и Менелая к задачам на доказательство. 3. Решение задач на пропорциональное деление отрезков в треугольнике. 4. Реш
Слайд 5

Методика обучения решению задач в период предпрофильной подготовки

1. Теорема Менелая и пропорциональные отрезки в треугольнике. 2. Теорема Чевы и ее следствия. Применение теорем Чевы и Менелая к задачам на доказательство. 3. Решение задач на пропорциональное деление отрезков в треугольнике. 4. Решение задач, связанных с нахождением площадей. 5. Комбинированные задачи.

Теорема Менелая и пропорциональные отрезки в треугольнике. Задача 1.В треугольнике ABC точка D делит сторону BC в отношении BD:DC= 1: 3, а точка O делит AD в отношении AO:OD=5:2. В каком отношении прямая BO делит отрезок AC? Задача 2.В ∆ABC на стороне AC взята точка M, а на стороне BC – точка K так,
Слайд 6

Теорема Менелая и пропорциональные отрезки в треугольнике

Задача 1.В треугольнике ABC точка D делит сторону BC в отношении BD:DC= 1: 3, а точка O делит AD в отношении AO:OD=5:2. В каком отношении прямая BO делит отрезок AC? Задача 2.В ∆ABC на стороне AC взята точка M, а на стороне BC – точка K так, что AM: MC= 2:3, BK: KC= 4:3. В каком отношении AK делит отрезок BM? Задача 3. В ∆ABC AA1 - биссектриса, BB1- медиана; AB=2, AC=3; Найти BO: OB1

Теорема Чевы и ее следствия. Следствие1. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Следствие 2. Биссектрисы треугольника пересекаются в одной точке. Следствие3. Высоты треугольника (или их продолжения) пересекаются в одной точке
Слайд 7

Теорема Чевы и ее следствия.

Следствие1. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. Следствие 2. Биссектрисы треугольника пересекаются в одной точке. Следствие3. Высоты треугольника (или их продолжения) пересекаются в одной точке.

Следствие4. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Следствие 5. Прямые, соединяющие вершины треугольника с точками, в которых вписанная окружность касается противоположных сторон, пересекаются в одной точке.
Слайд 8

Следствие4. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Следствие 5. Прямые, соединяющие вершины треугольника с точками, в которых вписанная окружность касается противоположных сторон, пересекаются в одной точке.

Применение теорем Чевы и Менелая к задачам на доказательство. Задача 1. Используя теорему Чевы, доказать, что в произвольном треугольнике прямые, проходящие через вершины и делящие периметр треугольника пополам, пересекаются в одной точке. Задача 2. На стороне AC треугольника ABC взяты точки P и E ,
Слайд 9

Применение теорем Чевы и Менелая к задачам на доказательство

Задача 1. Используя теорему Чевы, доказать, что в произвольном треугольнике прямые, проходящие через вершины и делящие периметр треугольника пополам, пересекаются в одной точке. Задача 2. На стороне AC треугольника ABC взяты точки P и E , на стороне BC – точки M и K, причем AP: PE: EC= CK: KM: MB. Отрезки AM и BP пересекаются в точке O, отрезки AK и BE – в точке T. Докажите, что точки O, T и С лежат на одной прямой.

Задачи на пропорциональное деление отрезков в треугольнике. Задача 1. В треугольнике ABC, описанном около окружности, AB = 8, BC = 5, AC = 4. Точки A1,В1 и C1 - точки касания, принадлежащие соответственно сторонам BC,AC и BA. Точка P - точка пересечения отрезков AA1 и CC1. Найдите AP:PA1. Задача 2.
Слайд 10

Задачи на пропорциональное деление отрезков в треугольнике.

Задача 1. В треугольнике ABC, описанном около окружности, AB = 8, BC = 5, AC = 4. Точки A1,В1 и C1 - точки касания, принадлежащие соответственно сторонам BC,AC и BA. Точка P - точка пересечения отрезков AA1 и CC1. Найдите AP:PA1. Задача 2. Стороны треугольника 5, 6 и 7. Найдите отношение отрезков, на которые биссектриса большего угла этого треугольника разделена центром окружности, вписанной в треугольник.

Задача 3. В треугольнике ABC, площадь которого равна 6, на стороне AB взята точка K, делящая эту сторону в отношении AK:BK = 2:3, а на стороне AC – точка L, делящая AC в отношении AL: LC = 5:3. Точка Q пересечения прямых CK и BL удалена от прямой AB на расстояние 1,5. Найдите длину стороны AB. Задач
Слайд 11

Задача 3. В треугольнике ABC, площадь которого равна 6, на стороне AB взята точка K, делящая эту сторону в отношении AK:BK = 2:3, а на стороне AC – точка L, делящая AC в отношении AL: LC = 5:3. Точка Q пересечения прямых CK и BL удалена от прямой AB на расстояние 1,5. Найдите длину стороны AB. Задача 4. На стороне AC в треугольнике ABC взята точка K. AK=1, KC = 3. На стороне AB взята точка L. AL:LB=2:3. Q – точка пересечения прямых BK и CL. S = 1. Найдите длину высоты треугольника ABC, опущенной из вершины B.

Задачи, связанные с нахождением площадей. Задача 1. Медиана BD и биссектриса AE треугольника ABC пересекаются в точке F. Найти площадь треугольника ABC , если AF=3FE, BD=4, AE=6. Задача 2. На сторонах AB и BC треугольника ABC взяты точки M и N соответственно. Отрезки AN и CM пересекаются в точке L.
Слайд 12

Задачи, связанные с нахождением площадей

Задача 1. Медиана BD и биссектриса AE треугольника ABC пересекаются в точке F. Найти площадь треугольника ABC , если AF=3FE, BD=4, AE=6. Задача 2. На сторонах AB и BC треугольника ABC взяты точки M и N соответственно. Отрезки AN и CM пересекаются в точке L. Площади треугольников AML , CNL и ALC равны соответственно 15, 48 и 40. Найти площадь треугольника ABC.

Комбинированные задачи. Задача 1. На стороне NP квадрата MNPQ взята точка A, а на стороне PQ – точка B так, что NA:AP = PB:BQ = 2:3. Точка L является точкой пересечения отрезков MA и NB. В каком отношении точка L делит отрезок MA? Задача 2. В трапеции ABCD с основаниями AD и BC через точку A проведе
Слайд 13

Комбинированные задачи.

Задача 1. На стороне NP квадрата MNPQ взята точка A, а на стороне PQ – точка B так, что NA:AP = PB:BQ = 2:3. Точка L является точкой пересечения отрезков MA и NB. В каком отношении точка L делит отрезок MA? Задача 2. В трапеции ABCD с основаниями AD и BC через точку A проведена прямая, которая пересекает диагональ BD в точке E и боковую сторону CD в точке K, причем BE:ED=1:2, CK:KD=1:4. Найдите отношение длин оснований трапеции.

Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса. Урок 1. Теорема Менелая и теорема Чевы. Задача. В треугольнике ABC на стороне AC взята точка N так, что AN:NC=m:n, на стороне BC- точка K. BN пересекает AK в точке Q, BQ : QN= p:q. Найти отношение площадей треугольников AKC
Слайд 14

Изучение темы «Теорема Менелая и теорема Чевы» в курсе геометрии 10 класса

Урок 1. Теорема Менелая и теорема Чевы.

Задача. В треугольнике ABC на стороне AC взята точка N так, что AN:NC=m:n, на стороне BC- точка K. BN пересекает AK в точке Q, BQ : QN= p:q. Найти отношение площадей треугольников AKC и ABK.

( т.к. высоты равны)

I способ. Дополнительное построение: ND //

BC.

II способ. Рассмотрим треугольник BCN и секущую AK. По теореме Менелая
Слайд 15

II способ. Рассмотрим треугольник BCN и секущую AK. По теореме Менелая

Урок 2. Применение теорем Менелая и Чевы в решении ключевых задач. Цели урока: 1) формировать умения: -видеть конфигурации, удовлетворяющие заданным условиям; -решать задачи нестандартными способами; -использовать теоремы в задачах на доказательство; 2) развивать самостоятельность.
Слайд 16

Урок 2. Применение теорем Менелая и Чевы в решении ключевых задач

Цели урока: 1) формировать умения: -видеть конфигурации, удовлетворяющие заданным условиям; -решать задачи нестандартными способами; -использовать теоремы в задачах на доказательство; 2) развивать самостоятельность.

Задача. В равнобедренном треугольнике ABC (AС=BC) проведены медиана BN и высота АМ, которые пересекаются в точке D. AD=5, DM=2. Найти. Решение: AN=NC, AM=5+2=7. Рассмотрим ∆AMC и секущую NB. По теореме Менелая. Пусть коэффициент пропорциональности равен k, тогда СМ=3k, BM=2k. Из ∆ACM- прямоугольного
Слайд 17

Задача. В равнобедренном треугольнике ABC (AС=BC) проведены медиана BN и высота АМ, которые пересекаются в точке D. AD=5, DM=2. Найти

Решение: AN=NC, AM=5+2=7. Рассмотрим ∆AMC и секущую NB. По теореме Менелая

Пусть коэффициент пропорциональности равен k, тогда СМ=3k, BM=2k. Из ∆ACM- прямоугольного:

; Ответ:

Применение теорем Менелая и Чевы в решении стереометрических задач. Задача 1.На продолжении ребра АС правильной треугольной пирамиды ABCD с вершиной D взята точка K так, что КА:КС=3:4, а на ребре DC взята точка L так, что DL:LC=2:1. В каком отношении делит объем пирамиды плоскость, проходящая через
Слайд 18

Применение теорем Менелая и Чевы в решении стереометрических задач.

Задача 1.На продолжении ребра АС правильной треугольной пирамиды ABCD с вершиной D взята точка K так, что КА:КС=3:4, а на ребре DC взята точка L так, что DL:LC=2:1. В каком отношении делит объем пирамиды плоскость, проходящая через точки B, L и К? Задача 2. Дана правильная четырехугольная пирамида SABCD с вершиной S. На продолжении ребра CD взята точка M так, что DM=2CD . Через точки М, В и середину ребра SC проведена плоскость. В каком отношении она делит объем пирамиды?

Задача 3. Дана правильная треугольная призма с боковыми ребрами AA1,BB1 и CC1. Причем на продолжении ребра BA взята точка M так, что MA=AB. Через точки M,B1 и середину ребра AC проведена плоскость. В каком отношении она делит объем призмы?
Слайд 19

Задача 3. Дана правильная треугольная призма с боковыми ребрами AA1,BB1 и CC1. Причем на продолжении ребра BA взята точка M так, что MA=AB. Через точки M,B1 и середину ребра AC проведена плоскость. В каком отношении она делит объем призмы?

«Умение решать задачи- такое же практическое искусство, как умение плавать или бегать. Ему можно научиться только путем подражания или упражнения» Д.Пойа
Слайд 20

«Умение решать задачи- такое же практическое искусство, как умение плавать или бегать. Ему можно научиться только путем подражания или упражнения» Д.Пойа

Список похожих презентаций

Теорема Пифагора в картинках

Теорема Пифагора в картинках

Мальчик прошел от дома по направлению на восток 800 м. Затем повернул на север и прошел 600 м. На каком расстоянии от дома оказался мальчик? 800 600 ...
Теорема Пифагора

Теорема Пифагора

Древний Китай Египет Карикатуры. Из книги Чу-пей. В этом сочинении говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить ...
Теорема Пифагора - Решение задач на готовых чертежах

Теорема Пифагора - Решение задач на готовых чертежах

8 9 10 11 14 15 16 17 18 30 1 3 4 5 6 13 19 7. Найти: С В А Дано: 8 см 6 см ? 2. 5 см 7 см. B C D 12 см 13 см. О. . 1350. Е 450. . E F 300. . a O. ...
Франсуа Виет и его теорема

Франсуа Виет и его теорема

Искусство, которое я излагаю, ново или по крайней мере было настолько испорчено временем и искажено влиянием варваров, что я счел нужным придать ему ...
Теорема Пифагора

Теорема Пифагора

Содержание. Формулировка теоремы Доказательства теоремы Значение теоремы Пифагора. Формулировка теоремы. « Доказать, что квадрат, построенный на гипотенузе ...
Теорема Пифагора. история, доказательства, применение

Теорема Пифагора. история, доказательства, применение

Содержание. Введение История теоремы Неалгебраические доказательства теоремы Алгебраические доказательства теоремы Применение теоремы Заключение Литература. ...
Теорема синусов, теорема косинусов

Теорема синусов, теорема косинусов

Определить вид треугольника (остроугольный, прямоугольный, тупоугольный). Стороны треугольника равны 3,4,5 см Стороны треугольника равны 5, 12,13 ...
Пифагор и его теорема

Пифагор и его теорема

Оглавление. Опрос Биография Теорема Доказательства Задачи Заключение. Содержание. Дата и место рождения: примерно 570 - 580 г. до н.э Сидон или Самос ...
Площади фигур. Теорема Пифагора

Площади фигур. Теорема Пифагора

Установите соответствие между фигурой и формулой площади. . Задача № 1. В треугольнике два угла равны 45 и 90 , а большая сторона 12 см. Найдите 2 ...
Многоликая теорема Пифагора

Многоликая теорема Пифагора

Аннотация. На протяжении многих лет людей интересовал вопрос о теореме Пифагора и о различных способах её доказательства. Причина такой популярности ...
Пифагор и его теорема

Пифагор и его теорема

Биография Пифагора Пифагорейская школа Открытия Пифагора Пифагор и музыка Теорема Пифагора Проверь себя. Содержание Остров Самос. Биография Пифагора. ...
Квадратное уравнение и теорема Виета

Квадратное уравнение и теорема Виета

Цель урока:. Повторить решение квадратных уравнений общего вида, неполных квадратных уравнений. Рассмотреть и доказать теорему Виета и сформулировать ...
Закон больших чисел. Теорема Чебышева

Закон больших чисел. Теорема Чебышева

Содержание: 1. Закон больших чисел. 2. Теорема Чебышева. Примеры. Закон больших чисел Для решения многих практических задач необходимо знать комплекс ...
Закон больших чисел и Центральная предельная теорема

Закон больших чисел и Центральная предельная теорема

5. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 2002. – 405 с. 6. Гмурман В.Е. Руководство к решению задач по теории ...
Теорема Пифагора доказательство

Теорема Пифагора доказательство

Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов. Елекова Э.М. Республика Алтай. Смотри и докажи! (∆ АВС- прямоугольный ...
Пространственная теорема Пифагора

Пространственная теорема Пифагора

Все плоские углы тетраэдра ОABC при вершине О — прямые. Докажите, что квадрат площади треугольника ABC равен сумме квадратов площадей остальных граней ...
теорема Пифагора междуречье

теорема Пифагора междуречье

Во II тысячелетии до н.э. Вавилон. Писцы должны уметь писать понятно, хорошо знать счет, уметь межевать земли, примирять спорящих. Писец. Широкое ...
Прямая и обратная теорема

Прямая и обратная теорема

Контрольные вопросы. Что такое геометрия? Что такое планиметрия? Чью геометрию мы изучаем? Что такое теорема? Научная работа Евклида? Наука, занимающаяся ...
Теорема синусов

Теорема синусов

Проверка домашнего задания. № 1020 (а, в) Ответы: в) а). Решение: а) в). Устная работа:. Ответы к задачам по чертежам:. Рис. 174 S = 12. Рис. 176 ...
Такая известная теорема Пифагора

Такая известная теорема Пифагора

Пифагоровы штаны на все стороны равны ? Кто такой пифагор? Чем он знаменит? Пифагор Самосский(570-490гг до н. э.) – древнегреческий философ и математик, ...

Конспекты

Теорема Пифагора

Теорема Пифагора

Урок по геометрии по теме: «Теорема. Пифагора». Подготовила: Сеитова Лариса Ромазановна, учитель математики муниципального казённого общеобразовательного ...
Теорема Пифагора

Теорема Пифагора

План-конспект урока по теме «Теорема Пифагора» . Цели урока:. . . Изучить некоторые исторические сведения о Пифагоре и его теореме, доказательство ...
Теорема Пифагора

Теорема Пифагора

Тема: Теорема Пифагора. «Кто смолоду делает, думает сам. тот становится потом надежнее. крепче, умнее ». В. Шукшин. Цель обучения :. ...
Теорема Пифагора

Теорема Пифагора

Тема урока:. Теорема Пифагора. Цели урока:. Образовательные: сформулировать и доказать теорему Пифагора,. . рассмотреть основные следствия из ...
Теорема Пифагора

Теорема Пифагора

VII ВСЕРОССИЙСКИЙ КОНКУРС. ПРОФЕССИОНАЛЬНОГО МАСТЕРСТВА ПЕДАГОГОВ. «МОЙ ЛУЧШИЙ УРОК». естественно-научное направление. Муниципальное ...
Теорема Фалеса. Пропорциональные отрезки

Теорема Фалеса. Пропорциональные отрезки

Геометрия 7 класс. Тема:. . «Теорема Фалеса. Пропорциональные отрезки». Тип урока:. комбинированный. Оборудование:. компьютер с проектором, ...
Теорема Пифагора

Теорема Пифагора

Автор: Сокольникова Галина Александровна, МКОУ Невельская ООШ, учитель математики. . . Предмет: Геометрия, 8 класс. Название темы: Площадь. ...
Теорема Виета

Теорема Виета

Астахова И.А. , учитель математики ТОГБОУ кадетская школа-интернат «Многопрофильный кадетский корпус», Г.Тамбов. Тема урока: «Теорема Виета». ...
Теорема Виета

Теорема Виета

Урок по алгебре в 8 классе по теме «Теорема Виета». Конева Надежда Александровна, учитель математики ВКК. . МБОУ Борисоглебского городского округа. ...
Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители

Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители

Для учителя. Урок алгебры в 8 классе. . Тема:. «Решение квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на множители». ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Математика
Автор презентации:учитель математики Колина Н.К.
Содержит:20 слайд(ов)
Поделись с друзьями:
Скачать напрямую
Смотреть советы по подготовке презентации