- Правильные многогранники

Презентация "Правильные многогранники" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18

Презентацию на тему "Правильные многогранники" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 18 слайд(ов).

Слайды презентации

Правильные многогранники. Выполнила Зайцева Т.Г. – преподаватель математики КГБОУ «Машиностроительный профессиональный лицей» г. Красноярск
Слайд 1

Правильные многогранники

Выполнила Зайцева Т.Г. – преподаватель математики КГБОУ «Машиностроительный профессиональный лицей» г. Красноярск

Определение правильного многогранника. Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер. Для перехода к выполнению задания воспользуйся кнопкой
Слайд 2

Определение правильного многогранника

Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер. Для перехода к выполнению задания воспользуйся кнопкой

Какие из представленных многогранников являются правильными?
Слайд 3

Какие из представленных многогранников являются правильными?

Существует 5 типов правильных многогранников. Правильный додекаэдр. Правильный икосаэдр. Правильный гексаэдр. Правильный тетраэдр. Правильный октаэдр
Слайд 4

Существует 5 типов правильных многогранников

Правильный додекаэдр

Правильный икосаэдр

Правильный гексаэдр

Правильный тетраэдр

Правильный октаэдр

C. В переводе с греческого «тетраэдр» - четырёхгранник . У правильного тетраэдра грани – правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны. Кнопка для перехода к таблице
Слайд 5

C

В переводе с греческого «тетраэдр» - четырёхгранник . У правильного тетраэдра грани – правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны.

Кнопка для перехода к таблице

Гексаэдр - шестигранник. У правильного гексаэдра (куба) все грани -квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными рёбрами.
Слайд 6

Гексаэдр - шестигранник. У правильного гексаэдра (куба) все грани -квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными рёбрами.

Октаэдр - восьмигранник. У октаэдра грани – правильные треугольники, но в отличие от тетраэдра в каждой вершине сходится по четыре ребра.
Слайд 7

Октаэдр - восьмигранник. У октаэдра грани – правильные треугольники, но в отличие от тетраэдра в каждой вершине сходится по четыре ребра.

Додекаэдр - двенадцатигранник. У додекаэдра грани – правильные пятиугольники. В каждой вершине сходится по три ребра.
Слайд 8

Додекаэдр - двенадцатигранник. У додекаэдра грани – правильные пятиугольники. В каждой вершине сходится по три ребра.

Икосаэдр - двадцатигранник. У икосаэдра грани – правильные треугольники. В каждой вершине сходится по пять рёбер.
Слайд 9

Икосаэдр - двадцатигранник. У икосаэдра грани – правильные треугольники. В каждой вершине сходится по пять рёбер.

Историческая справка. О существовании всего лишь пяти правильных многогранников знали еще в Древней Греции. Великий древнегреческий мыслитель Платон считал, что четыре из них олицетворяют четыре «стихии»: тетраэдр – огонь, куб – землю, икосаэдр – воду, октаэдр – воздух. Пятый же многогранник, додека
Слайд 10

Историческая справка

О существовании всего лишь пяти правильных многогранников знали еще в Древней Греции. Великий древнегреческий мыслитель Платон считал, что четыре из них олицетворяют четыре «стихии»: тетраэдр – огонь, куб – землю, икосаэдр – воду, октаэдр – воздух. Пятый же многогранник, додекаэдр, символизировал собой все мироздание, представлял собой образ всей Вселенной, почитался главнейшим и его стали называть quinta essentia (квинта эссенциа») или «пятая сущность». Правильные многогранники называют иногда Платоновыми телами, им посвящена последняя книга «Начал» Евклида. Её считают венцом стереометрии у древних греков.

Основные элементы правильных многогранников. Заполните таблицу в тетради и проверьте её по теореме (формуле) Эйлера В + Г = Р + 2, где Р – число рёбер, В – вершин, Г - граней
Слайд 11

Основные элементы правильных многогранников

Заполните таблицу в тетради и проверьте её по теореме (формуле) Эйлера В + Г = Р + 2, где Р – число рёбер, В – вершин, Г - граней

Применение в кристаллографии. Тела Платона нашли широкое применение в кристаллографии, так как многие кристаллы имеют форму правильных многогранников. Например, куб - монокристалл поваренной соли (NaCl), октаэдр - монокристалл алюмокалиевых квасцов, одна из форм кристаллов алмаза - октаэдр. Кристалл
Слайд 12

Применение в кристаллографии

Тела Платона нашли широкое применение в кристаллографии, так как многие кристаллы имеют форму правильных многогранников. Например, куб - монокристалл поваренной соли (NaCl), октаэдр - монокристалл алюмокалиевых квасцов, одна из форм кристаллов алмаза - октаэдр

Кристаллы бывают самой различной формы: 1 — берилл, 2 — аметист, 3 — рубин, 4 — кристалл металла германия — денорит, 5 — горный хрусталь, 6 — испанский шпат, 7 — поваренная соль, 8 — ограненный алмаз—бриллиант, вправленный в кольцо. В колбе с перенасыщенным раствором на конце проволочки, опущенной в раствор, растет кристалл поваренной соли.

Поваренная соль состоит из кристаллов в форме куба. Скелет одноклеточного организма феодарии представляет собой икосаэдр. Минерал сильвин также имеет кристаллическую решетку в форме куба. Молекулы воды имеют форму тетраэдра. Минерал куприт образует кристаллы в форме октаэдров. Кристаллы пирита имеют
Слайд 13

Поваренная соль состоит из кристаллов в форме куба

Скелет одноклеточного организма феодарии представляет собой икосаэдр.

Минерал сильвин также имеет кристаллическую решетку в форме куба.

Молекулы воды имеют форму тетраэдра.

Минерал куприт образует кристаллы в форме октаэдров.

Кристаллы пирита имеют форму додекаэдра

Заключение. Сегодня на уроке вы познакомились с понятием правильного многогранника, узнали о существовании пяти типов правильных многогранников. Заполните в тетради таблицу «Элементы правильных многогранников. Решите задачи №56 (с.247),№35(с.245)
Слайд 14

Заключение

Сегодня на уроке вы познакомились с понятием правильного многогранника, узнали о существовании пяти типов правильных многогранников. Заполните в тетради таблицу «Элементы правильных многогранников. Решите задачи №56 (с.247),№35(с.245)

Леонард Эйлер (1707-1783г.г.). Эйлер - швейцарский математик и механик, академик Петербургской Академии Наук, автор огромного количества глубоких результатов во всех областях математики.	Полное собрание сочинений Эйлера-72 тома-не вышло целиком и до сих пор. По единодушному признанию современников Л
Слайд 15

Леонард Эйлер (1707-1783г.г.)

Эйлер - швейцарский математик и механик, академик Петербургской Академии Наук, автор огромного количества глубоких результатов во всех областях математики. Полное собрание сочинений Эйлера-72 тома-не вышло целиком и до сих пор. По единодушному признанию современников Леонард Эйлер - первый математик мира. В геометрии Эйлер положил начало совершенно новой области исследований, выросшей впоследствии в самостоятельную науку — топологию. Имя Эйлера носит формула, связывающая число вершин (В), ребер (Р) и граней (Г) выпуклого многогранника: В + Г = Р + 2 «Эйлер не проглядел ничего в современной ему математике, хотя последние семнадцать лет своей жизни был совершенно слеп». Э.Т.Белл

3-1. Верно, при условии равенства всех ребер. Для возвращения к выполнению задания воспользуйся кнопкой
Слайд 16

3-1

Верно, при условии равенства всех ребер. Для возвращения к выполнению задания воспользуйся кнопкой

3-2. Неверно. Прочти ещё раз определение правильного многогранника.
Слайд 17

3-2

Неверно. Прочти ещё раз определение правильного многогранника.

3-4. Верно. Для возвращения к выполнению задания воспользуйся кнопкой
Слайд 18

3-4

Верно. Для возвращения к выполнению задания воспользуйся кнопкой

Список похожих презентаций

Правильные многогранники

Правильные многогранники

Определение:. правильный многогранник - такой выпуклый многогранник, все грани которого являются одинаковыми правильными многоугольниками и все двугранные ...
Правильные многогранники

Правильные многогранники

Определение:. Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий ...
Правильные многогранники

Правильные многогранники

Первым свойства правильных многогранников описал древнегреческий ученый Платон. Именно поэтому правильные многогранники называют также телами Платона. ...
Симметрия в пространстве. Правильные многогранники

Симметрия в пространстве. Правильные многогранники

СИММЕТРИЯ В ПРОСТРАНСТВЕ. «Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство». Герман ...
Правильные многогранники

Правильные многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...
Правильные многогранники

Правильные многогранники

Геометрический кроссворд. Какое тело носит имя Хеопса? Что представляет собой боковая грань пирамиды? Как называется правильный четырехугольник? Наука ...
Правильные многогранники

Правильные многогранники

Правильный многогранник или платоново тело — это выпуклый многогранник с равными гранями, которые составляют правильные многоугольники. Существует ...
Правильные многогранники

Правильные многогранники

Две точки А и А1 называются симметричными относительно точки О, если О — середина отрезка АА1. Точка О считается симметричной самой себе. Симметрия ...
Правильные многогранники

Правильные многогранники

Правильные многогранники. – это выпуклый многогранник, у которого гранями являются правильные многоугольники и все многогранные углы равны. Полуправильные ...
Правильные многогранники в геометрии

Правильные многогранники в геометрии

Цели: Знакомить учащихся с новым типом многогранников - правильными многогранниками. Показать влияние правильных многогранников на возникновение филосовских ...
Правильные многогранники

Правильные многогранники

Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников. Грани многогранника - это многоугольники, которые ...
Правильные многогранники в четырехмерном пространстве

Правильные многогранники в четырехмерном пространстве

Абстрактный Тороидальный Гексадекаэдр — это комбинаторно-топологический объект — правильная триангуляция тора с 8 вершинами и 16 гранями. С. А. Л., ...
Правильные многогранники в жизни

Правильные многогранники в жизни

Цели:. Изучить виды, свойства правильных многогранников Рассмотреть использование геометрических тел в архитектуре Изучить один из видов искусства ...
Правильные многогранники и их построение

Правильные многогранники и их построение

Цели и задачи:. Дать понятие правильных многогранников ( на основе определения многогранников). Доказать почему существует только 5 типов правильных ...
Правильные многогранники и их приметы

Правильные многогранники и их приметы

Многогранник называется правильным если:. 1) ОН ВЫПУКЛЫЙ. (Т.Е. ЛЕЖИТ ПО ОДНУ СТОРОНУ ОТ ПЛОСКОСТИ КАЖДОЙ ГРАНИ). 2) ВСЕ ЕГО ГРАНИ – РАВНЫЕ ПРАВИЛЬНЫЕ ...
Правильные многогранники и их развертки

Правильные многогранники и их развертки

Цели урока:. Познакомить учащихся с правильными многогранниками и их развертками, показать их в объеме и в движении, а также показать возможности ...
Правильные многогранники

Правильные многогранники

Что такое правильный многогранник? Правильный многогранник - многогранник, все грани которого - одинаковые правильные многоугольники и все многогранные ...
Правильные многогранники

Правильные многогранники

СИММЕТРИЯ В ПРОСТРАНСТВЕ. “Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту и совершенство” (Г.Вейль). ...
Правильные и полуправильные многогранники

Правильные и полуправильные многогранники

Учение о правильных многогранниках изложил в своих трудах Платон. С тех пор правильные многогранники называют Платоновыми телами. Существует пять ...
Платоновы тела Правильные выпуклые многогранники

Платоновы тела Правильные выпуклые многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...

Конспекты

Правильные многогранники

Правильные многогранники

Урок геометрии в 11 классе. «Правильные многогранники». Учитель математики КГУ «Гимназия №6 г. Семей» Бочарова Галина Борисовна. Цель: Знакомство ...
Правильные многогранники

Правильные многогранники

Урок по теме: «Правильные многогранники». Тип урока:. изучение нового материала. Продолжительность урока. : 2 урока по 45 минут. Цель урока:. ...
Правильные многогранники

Правильные многогранники

2. . . Конспект урока геометрии с применением ИКТ в 10 классе. Тема:. Правильные многогран. ники. Цели урока:. Предметный компонент:. Изучение ...
Правильные многогранники

Правильные многогранники

Муниципальное общеобразовательное учреждение. . средняя общеобразовательная школа №5. Урок геометрии в 11 классе. «Правильные многогранники». ...
Правильные многогранники

Правильные многогранники

Тема урока: "Правильные многогранники". (10 класс). Учитель математики Иманова Алена Викторовна. МБОУ «Средняя общеобразовательная школа №21». ...
Правильные многогранники. Тела Архимеда. Тела Кеплера-Пуансо

Правильные многогранники. Тела Архимеда. Тела Кеплера-Пуансо

. . . . . . дисциплина. : геометрия. План урока. № 13-14. Тема урока:. Правильные многогранники. Тела Архимеда. Тела Кеплера-Пуансо. ...
Обыкновенные дроби. Правильные и неправильные дроби

Обыкновенные дроби. Правильные и неправильные дроби

Методическая разработка урока проверки знаний. Урок математики в 5-м классе. Повторение по теме "Обыкновенные дроби. Правильные и неправильные дроби". ...
Правильные многоугольники

Правильные многоугольники

ФИО автора материала: Мосолкова Людмила Васильевна. . Место работы (название образовательного учреждения: МБОУ г. Магадана «СОШ с УИМ № 15». . ...
Правильные и неправильные дроби

Правильные и неправильные дроби

План-конспект урока. . Учителя. математики и информатики. . МБОУ СОШ. №20. ФИО. Лютова Ирины Сергеевны.  . Класс: 5. Предмет: математика. ...
Правильные и неправильные дроби

Правильные и неправильные дроби

Солдатова. . Ирина Валерьевна. I. квалификационная категория. Самарская область Исаклинский район с. Исаклы. ГБОУ СОШ с. Исаклы. Математика. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:20 мая 2019
Категория:Математика
Содержит:18 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации