- Правильные многогранники

Презентация "Правильные многогранники" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17

Презентацию на тему "Правильные многогранники" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 17 слайд(ов).

Слайды презентации

Определение и условия. Виды и свойства Теория Кеплера. Три закона Кеплера. Многоугольники в мире. Правильные многогранники Платоновы тела. Проектная работа по геометрии Учени 11 класса «А» 16.11.2012
Слайд 1

Определение и условия

Виды и свойства Теория Кеплера

Три закона Кеплера

Многоугольники в мире

Правильные многогранники Платоновы тела

Проектная работа по геометрии Учени 11 класса «А» 16.11.2012

Определение: Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией.
Слайд 2

Определение:

Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией.

Многогранник называется правильным, если: он выпуклый; все его грани являются равными правильными многоугольниками; в каждой его вершине сходится одинаковое число рёбер.
Слайд 3

Многогранник называется правильным, если:

он выпуклый; все его грани являются равными правильными многоугольниками; в каждой его вершине сходится одинаковое число рёбер.

Существует всего пять правильных многогранников: Тетраэдр Октаэдр Икосаэдр Гексаэдр(куб) Додекаэдр
Слайд 4

Существует всего пять правильных многогранников:

Тетраэдр Октаэдр Икосаэдр Гексаэдр(куб) Додекаэдр

Тетраэдр. Тетра́эдр (греч. τετραεδρον — четырёхгранник) — простейший многогранник, гранями которого являются четыре треугольника. У тетраэдра 4 грани, 4 вершины и 6 рёбер.
Слайд 5

Тетраэдр

Тетра́эдр (греч. τετραεδρον — четырёхгранник) — простейший многогранник, гранями которого являются четыре треугольника. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

Свойства тетраэдра: Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед. Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, считая от вершины. Эта точка делит бимедианы п
Слайд 6

Свойства тетраэдра:

Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед. Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, считая от вершины. Эта точка делит бимедианы пополам. Плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра делит его на две равные по объёму части.

Октаэдр. Окта́эдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч. έδρα — «основание») — один из пяти выпуклых правильных многогранников. Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.
Слайд 7

Октаэдр

Окта́эдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч. έδρα — «основание») — один из пяти выпуклых правильных многогранников. Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.

Икосаэдр. Икоса́эдр (от греч. εικοσάς — двадцать; -εδρον — грань, лицо, основание) — правильный выпуклый многогранник, двадцатигранник. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм.
Слайд 8

Икосаэдр

Икоса́эдр (от греч. εικοσάς — двадцать; -εδρον — грань, лицо, основание) — правильный выпуклый многогранник, двадцатигранник. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм.

Свойства икосаэдра: Икосаэдр можно вписать в куб, при этом шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба В икосаэдр может быть вписан тетраэдр, та
Слайд 9

Свойства икосаэдра:

Икосаэдр можно вписать в куб, при этом шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба В икосаэдр может быть вписан тетраэдр, так что четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра. Икосаэдр можно вписать в додекаэдр, при этом вершины икосаэдра будут совмещены с центрами граней додекаэдра. В икосаэдр можно вписать додекаэдр с совмещением вершин додекаэдра и центров граней икосаэдра.

Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32), а число рёбер возрастает до 30+12×5=90. Собрать модель икосаэдра можно при помощи 20 правильных тетраэдров.

Гексаэдр. Куб или гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы. Гексаэдр имеет 6 граней, 12 рёбер, 8 вершин.
Слайд 10

Гексаэдр

Куб или гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы. Гексаэдр имеет 6 граней, 12 рёбер, 8 вершин.

Свойства куба. Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям. В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шест
Слайд 11

Свойства куба

Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям. В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным, а его объём составляет 1/3 от объёма куба.

В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба. Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра. В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.

Додекаэдр. Додека́эдр (от греч. δώδεκα — двенадцать и εδρον — грань) — двенадцатигранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в
Слайд 12

Додекаэдр

Додека́эдр (от греч. δώδεκα — двенадцать и εδρον — грань) — двенадцатигранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Сумма плоских углов при каждой из 20 вершин равна 324°. Додекаэдр имеет три звёздчатые формы.

Сначала Кеплера соблазнила мысль о том, что существует всего пять правильных многогранников и всего шесть (как казалось тогда) планет Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн. Показалось, что гармония мира и любовь природы к повторениям сделали правильные многогранники связую
Слайд 13

Сначала Кеплера соблазнила мысль о том, что существует всего пять правильных многогранников и всего шесть (как казалось тогда) планет Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн. Показалось, что гармония мира и любовь природы к повторениям сделали правильные многогранники связующими звеньями между шестью небесными телами. Кеплер предположил, что сферы планет связаны между собой вписанными в них Платоновыми телами. Так как для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором располагается Солнце.

Три закона движения планет Кеплера: На основе обобщения данных, полученных в результате наблюдений, он установил три закона движения планет относительно Солнца. Первый закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Второй закон: каждая планета движется в пло
Слайд 14

Три закона движения планет Кеплера:

На основе обобщения данных, полученных в результате наблюдений, он установил три закона движения планет относительно Солнца. Первый закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Второй закон: каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиусом-вектором, изменяется пропорционально времени. Третий закон: квадраты времени обращения планеты вокруг Солнца относятся, как кубы их средних расстояний от Солнца.

Но это были только гипотезы, пока их не объяснил и уточнил на основе закона всемирного тяготения Исаак Ньютон (1643-1727), создавший теорию движения небесных тел, которая доказала свою жизнеспособность тем, что с ее помощью люди научились предсказывать многие небесные явления.

Модель солнечной системы Кеплера:
Слайд 15

Модель солнечной системы Кеплера:

Многоугольники в окружающем мире. Правильные многогранники встречаются в совершенно разных науках и везде в окружающем мире: Молекулы веществ в химии тела вирусов Игральные кости А так же и в других совершенно различных местах нашей вселенной, например Платон сопоставлял додекаэдр с моделью нашей вс
Слайд 16

Многоугольники в окружающем мире

Правильные многогранники встречаются в совершенно разных науках и везде в окружающем мире: Молекулы веществ в химии тела вирусов Игральные кости А так же и в других совершенно различных местах нашей вселенной, например Платон сопоставлял додекаэдр с моделью нашей вселенной. О нём он писал: «…его бог определил для Вселенной и прибегнул к нему в качестве образца»

Спасибо за внимание!
Слайд 17

Спасибо за внимание!

Список похожих презентаций

Правильные многогранники

Правильные многогранники

Определение:. правильный многогранник - такой выпуклый многогранник, все грани которого являются одинаковыми правильными многоугольниками и все двугранные ...
Правильные многогранники

Правильные многогранники

Что такое правильный многогранник? Правильный многогранник - многогранник, все грани которого - одинаковые правильные многоугольники и все многогранные ...
Правильные многогранники

Правильные многогранники

Первым свойства правильных многогранников описал древнегреческий ученый Платон. Именно поэтому правильные многогранники называют также телами Платона. ...
Симметрия в пространстве. Правильные многогранники

Симметрия в пространстве. Правильные многогранники

СИММЕТРИЯ В ПРОСТРАНСТВЕ. «Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство». Герман ...
Правильные многогранники

Правильные многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...
Правильные многогранники

Правильные многогранники

Геометрический кроссворд. Какое тело носит имя Хеопса? Что представляет собой боковая грань пирамиды? Как называется правильный четырехугольник? Наука ...
Правильные многогранники

Правильные многогранники

Правильный многогранник или платоново тело — это выпуклый многогранник с равными гранями, которые составляют правильные многоугольники. Существует ...
Правильные многогранники

Правильные многогранники

Две точки А и А1 называются симметричными относительно точки О, если О — середина отрезка АА1. Точка О считается симметричной самой себе. Симметрия ...
Правильные многогранники

Правильные многогранники

Правильные многогранники. – это выпуклый многогранник, у которого гранями являются правильные многоугольники и все многогранные углы равны. Полуправильные ...
Правильные многогранники в геометрии

Правильные многогранники в геометрии

Цели: Знакомить учащихся с новым типом многогранников - правильными многогранниками. Показать влияние правильных многогранников на возникновение филосовских ...
Правильные многогранники

Правильные многогранники

Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников. Грани многогранника - это многоугольники, которые ...
Правильные многогранники в четырехмерном пространстве

Правильные многогранники в четырехмерном пространстве

Абстрактный Тороидальный Гексадекаэдр — это комбинаторно-топологический объект — правильная триангуляция тора с 8 вершинами и 16 гранями. С. А. Л., ...
Правильные многогранники в жизни

Правильные многогранники в жизни

Цели:. Изучить виды, свойства правильных многогранников Рассмотреть использование геометрических тел в архитектуре Изучить один из видов искусства ...
Правильные многогранники и их построение

Правильные многогранники и их построение

Цели и задачи:. Дать понятие правильных многогранников ( на основе определения многогранников). Доказать почему существует только 5 типов правильных ...
Правильные многогранники и их приметы

Правильные многогранники и их приметы

Многогранник называется правильным если:. 1) ОН ВЫПУКЛЫЙ. (Т.Е. ЛЕЖИТ ПО ОДНУ СТОРОНУ ОТ ПЛОСКОСТИ КАЖДОЙ ГРАНИ). 2) ВСЕ ЕГО ГРАНИ – РАВНЫЕ ПРАВИЛЬНЫЕ ...
Правильные многогранники и их развертки

Правильные многогранники и их развертки

Цели урока:. Познакомить учащихся с правильными многогранниками и их развертками, показать их в объеме и в движении, а также показать возможности ...
Правильные многогранники

Правильные многогранники

Определение правильного многогранника. Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и ...
Правильные многогранники

Правильные многогранники

СИММЕТРИЯ В ПРОСТРАНСТВЕ. “Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту и совершенство” (Г.Вейль). ...
Правильные и полуправильные многогранники

Правильные и полуправильные многогранники

Учение о правильных многогранниках изложил в своих трудах Платон. С тех пор правильные многогранники называют Платоновыми телами. Существует пять ...
Платоновы тела Правильные выпуклые многогранники

Платоновы тела Правильные выпуклые многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...

Конспекты

Правильные многогранники

Правильные многогранники

Урок геометрии в 11 классе. «Правильные многогранники». Учитель математики КГУ «Гимназия №6 г. Семей» Бочарова Галина Борисовна. Цель: Знакомство ...
Правильные многогранники

Правильные многогранники

Урок по теме: «Правильные многогранники». Тип урока:. изучение нового материала. Продолжительность урока. : 2 урока по 45 минут. Цель урока:. ...
Правильные многогранники

Правильные многогранники

2. . . Конспект урока геометрии с применением ИКТ в 10 классе. Тема:. Правильные многогран. ники. Цели урока:. Предметный компонент:. Изучение ...
Правильные многогранники

Правильные многогранники

Муниципальное общеобразовательное учреждение. . средняя общеобразовательная школа №5. Урок геометрии в 11 классе. «Правильные многогранники». ...
Правильные многогранники

Правильные многогранники

Тема урока: "Правильные многогранники". (10 класс). Учитель математики Иманова Алена Викторовна. МБОУ «Средняя общеобразовательная школа №21». ...
Правильные многогранники. Тела Архимеда. Тела Кеплера-Пуансо

Правильные многогранники. Тела Архимеда. Тела Кеплера-Пуансо

. . . . . . дисциплина. : геометрия. План урока. № 13-14. Тема урока:. Правильные многогранники. Тела Архимеда. Тела Кеплера-Пуансо. ...
Обыкновенные дроби. Правильные и неправильные дроби

Обыкновенные дроби. Правильные и неправильные дроби

Методическая разработка урока проверки знаний. Урок математики в 5-м классе. Повторение по теме "Обыкновенные дроби. Правильные и неправильные дроби". ...
Правильные многоугольники

Правильные многоугольники

ФИО автора материала: Мосолкова Людмила Васильевна. . Место работы (название образовательного учреждения: МБОУ г. Магадана «СОШ с УИМ № 15». . ...
Правильные и неправильные дроби

Правильные и неправильные дроби

План-конспект урока. . Учителя. математики и информатики. . МБОУ СОШ. №20. ФИО. Лютова Ирины Сергеевны.  . Класс: 5. Предмет: математика. ...
Правильные и неправильные дроби

Правильные и неправильные дроби

Солдатова. . Ирина Валерьевна. I. квалификационная категория. Самарская область Исаклинский район с. Исаклы. ГБОУ СОШ с. Исаклы. Математика. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.