» » » Правильные многогранники

Презентация на тему Правильные многогранники

tapinapura

Презентацию на тему Правильные многогранники можно скачать абсолютно бесплатно на нашем сайте. Предмет презентации : Математика. Красочные слайды и илюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого презентации воспользуйтесь плеером, или если вы хотите скачать презентацию - нажмите на соответствующий текст под плеером. Презентация содержит 17 слайдов.

скачать презентацию

Слайды презентации

Слайд 1: Презентация Правильные многогранники
Слайд 1

Определение и условия

Виды и свойства Теория Кеплера

Три закона Кеплера

Многоугольники в мире

Правильные многогранники Платоновы тела

Проектная работа по геометрии Учени 11 класса «А» 16.11.2012

Слайд 2: Презентация Правильные многогранники
Слайд 2

Определение:

Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией.

Слайд 3: Презентация Правильные многогранники
Слайд 3

Многогранник называется правильным, если:

он выпуклый; все его грани являются равными правильными многоугольниками; в каждой его вершине сходится одинаковое число рёбер.

Слайд 4: Презентация Правильные многогранники
Слайд 4

Существует всего пять правильных многогранников:

Тетраэдр Октаэдр Икосаэдр Гексаэдр(куб) Додекаэдр

Слайд 5: Презентация Правильные многогранники
Слайд 5

Тетраэдр

Тетра́эдр (греч. τετραεδρον — четырёхгранник) — простейший многогранник, гранями которого являются четыре треугольника. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

Слайд 6: Презентация Правильные многогранники
Слайд 6

Свойства тетраэдра:

Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед. Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, считая от вершины. Эта точка делит бимедианы пополам. Плоскость, проходящая через середины двух скрещивающихся рёбер тетраэдра делит его на две равные по объёму части.

Слайд 7: Презентация Правильные многогранники
Слайд 7

Октаэдр

Окта́эдр (греч. οκτάεδρον, от греч. οκτώ, «восемь» и греч. έδρα — «основание») — один из пяти выпуклых правильных многогранников. Октаэдр имеет 8 треугольных граней, 12 рёбер, 6 вершин, в каждой его вершине сходятся 4 ребра.

Слайд 8: Презентация Правильные многогранники
Слайд 8

Икосаэдр

Икоса́эдр (от греч. εικοσάς — двадцать; -εδρον — грань, лицо, основание) — правильный выпуклый многогранник, двадцатигранник. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин — 12. Икосаэдр имеет 59 звёздчатых форм.

Слайд 9: Презентация Правильные многогранники
Слайд 9

Свойства икосаэдра:

Икосаэдр можно вписать в куб, при этом шесть взаимно перпендикулярных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра внутри куба, все двенадцать вершин икосаэдра будут лежать на шести гранях куба В икосаэдр может быть вписан тетраэдр, так что четыре вершины тетраэдра будут совмещены с четырьмя вершинами икосаэдра. Икосаэдр можно вписать в додекаэдр, при этом вершины икосаэдра будут совмещены с центрами граней додекаэдра. В икосаэдр можно вписать додекаэдр с совмещением вершин додекаэдра и центров граней икосаэдра.

Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32), а число рёбер возрастает до 30+12×5=90. Собрать модель икосаэдра можно при помощи 20 правильных тетраэдров.

Слайд 10: Презентация Правильные многогранники
Слайд 10

Гексаэдр

Куб или гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы. Гексаэдр имеет 6 граней, 12 рёбер, 8 вершин.

Слайд 11: Презентация Правильные многогранники
Слайд 11

Свойства куба

Четыре сечения куба являются правильными шестиугольниками — эти сечения проходят через центр куба перпендикулярно четырём его главным диагоналям. В куб можно вписать тетраэдр двумя способами. В обоих случаях четыре вершины тетраэдра будут совмещены с четырьмя вершинами куба и все шесть рёбер тетраэдра будут принадлежать граням куба. В первом случае все вершины тетраэдра принадлежат граням трехгранного угла, вершина которого совпадает с одной из вершин куба. Во втором случае попарно скрещивающиеся ребра тетраэдра принадлежат попарно противолежащим граням куба. Такой тетраэдр является правильным, а его объём составляет 1/3 от объёма куба.

В куб можно вписать октаэдр, притом все шесть вершин октаэдра будут совмещены с центрами шести граней куба. Куб можно вписать в октаэдр, притом все восемь вершин куба будут расположены в центрах восьми граней октаэдра. В куб можно вписать икосаэдр, при этом шесть взаимно параллельных рёбер икосаэдра будут расположены соответственно на шести гранях куба, остальные 24 ребра — внутри куба. Все двенадцать вершин икосаэдра будут лежать на шести гранях куба.

Слайд 12: Презентация Правильные многогранники
Слайд 12

Додекаэдр

Додека́эдр (от греч. δώδεκα — двенадцать и εδρον — грань) — двенадцатигранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Таким образом, додекаэдр имеет 12 граней (пятиугольных), 30 рёбер и 20 вершин (в каждой сходятся 3 ребра). Сумма плоских углов при каждой из 20 вершин равна 324°. Додекаэдр имеет три звёздчатые формы.

Слайд 13: Презентация Правильные многогранники
Слайд 13

Сначала Кеплера соблазнила мысль о том, что существует всего пять правильных многогранников и всего шесть (как казалось тогда) планет Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн. Показалось, что гармония мира и любовь природы к повторениям сделали правильные многогранники связующими звеньями между шестью небесными телами. Кеплер предположил, что сферы планет связаны между собой вписанными в них Платоновыми телами. Так как для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором располагается Солнце.

Слайд 14: Презентация Правильные многогранники
Слайд 14

Три закона движения планет Кеплера:

На основе обобщения данных, полученных в результате наблюдений, он установил три закона движения планет относительно Солнца. Первый закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Второй закон: каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиусом-вектором, изменяется пропорционально времени. Третий закон: квадраты времени обращения планеты вокруг Солнца относятся, как кубы их средних расстояний от Солнца.

Но это были только гипотезы, пока их не объяснил и уточнил на основе закона всемирного тяготения Исаак Ньютон (1643-1727), создавший теорию движения небесных тел, которая доказала свою жизнеспособность тем, что с ее помощью люди научились предсказывать многие небесные явления.

Слайд 15: Презентация Правильные многогранники
Слайд 15

Модель солнечной системы Кеплера:

Слайд 16: Презентация Правильные многогранники
Слайд 16

Многоугольники в окружающем мире

Правильные многогранники встречаются в совершенно разных науках и везде в окружающем мире: Молекулы веществ в химии тела вирусов Игральные кости А так же и в других совершенно различных местах нашей вселенной, например Платон сопоставлял додекаэдр с моделью нашей вселенной. О нём он писал: «…его бог определил для Вселенной и прибегнул к нему в качестве образца»

Слайд 17: Презентация Правильные многогранники
Слайд 17

Спасибо за внимание!

Список похожих презентаций

  • Яндекс.Метрика
  • Рейтинг@Mail.ru