- Правильные многогранники в четырехмерном пространстве

Презентация "Правильные многогранники в четырехмерном пространстве" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29

Презентацию на тему "Правильные многогранники в четырехмерном пространстве" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 29 слайд(ов).

Слайды презентации

Научно-исследовательский семинар кафедры высшей математики-1 МИЭТ под руководством проф. Гончарова В.А., проф. Кожухова И.Б. и проф. Поспелова А.С. 24 ноября, 2009 г. Правильные многогранники в четырехмерном пространстве «В огромном саду геометрии каждый найдет букет себе по вкусу.» Давид Гильберт С
Слайд 1

Научно-исследовательский семинар кафедры высшей математики-1 МИЭТ под руководством проф. Гончарова В.А., проф. Кожухова И.Б. и проф. Поспелова А.С. 24 ноября, 2009 г. Правильные многогранники в четырехмерном пространстве «В огромном саду геометрии каждый найдет букет себе по вкусу.» Давид Гильберт Сергей Александрович Лавренченко (С. А. Л.) http://lawrencenko.ru

Абстрактный Тороидальный Гексадекаэдр — это комбинаторно-топологический объект — правильная триангуляция тора с 8 вершинами и 16 гранями. С. А. Л., Неприводимые триангу- ляции тора, Укр. геометр. сб. 30 (1987) 52–62. ■ АТГ — правильная карта на торе: каждая грань — треугольник и степень каждой верши
Слайд 2

Абстрактный Тороидальный Гексадекаэдр — это комбинаторно-топологический объект — правильная триангуляция тора с 8 вершинами и 16 гранями. С. А. Л., Неприводимые триангу- ляции тора, Укр. геометр. сб. 30 (1987) 52–62. ■ АТГ — правильная карта на торе: каждая грань — треугольник и степень каждой вершины равна 6. ■ Ее граф изоморфен 1-скелету гексадекахорона, т.е. полному  4-дольному графу K_{2,2,2,2}.

Все ее автоморфизмы найдены при помощи компьютера: С. А. Л., Перечисление в явном виде всех автоморфизмов неприводимых триангу- ляций тора и всех укладок на тор помечен ных графов этих триангуляций. Харьков, 1987. – 57 с., Деп. в УкрНИИНТИ 01.10.87, № 2779 – Ук87. α_1 = id (тождественный) α_2 = (35)
Слайд 3

Все ее автоморфизмы найдены при помощи компьютера: С. А. Л., Перечисление в явном виде всех автоморфизмов неприводимых триангу- ляций тора и всех укладок на тор помечен ных графов этих триангуляций. Харьков, 1987. – 57 с., Деп. в УкрНИИНТИ 01.10.87, № 2779 – Ук87. α_1 = id (тождественный) α_2 = (35) (47) α_3 = (28) (34) (57) α_4 = (28) (37) (45) α_5 = (12) (47) (68) α_6 = (12) (35) (68) α_7 = (1268) (3457) α_8 = (1268) (3754) α_9 = (13246587) α_10 = (13876524) α_11 = (13) (27) (48) (56) α_12 = (1365) (2784) α_13 = (14) (23) (58) (67) α_14 = (1467) (2385) α_15 = (14256783) α_16 = (14836725) α_17 = (1563) (2487) α_18 = (15) (24) (36) (78) α_19 = (15846327) α_20 = (15276384) α_21 = (16) (34) (57) α_22 = (16) (37) (45) α_23 = (16) (28) α_24 = (16) (28) (35) (47) α_25 = (17856423) α_26 = (17236485) α_27 = (1764) (2583) α_28 = (17) (25) (38) (46) α_29 = (1862) (3457) α_30 = (1862) (3754) α_31 = (18) (26) (47) α_32 = (18) (26) (35)

Группу Aut (АТГ) можно определить и без компьютера. Эта группа вершинно- транзитивная, потому что в ней есть единый циклический сдвиг всех вершин: α_20 = (15276384). Подгруппа Shift =  ≈ Z_8. Она ненормальна. С другой стороны, стабилизатор каждой вершины есть подгруппа изоморфная Z_2 × Z_2, ненормал
Слайд 4

Группу Aut (АТГ) можно определить и без компьютера. Эта группа вершинно- транзитивная, потому что в ней есть единый циклический сдвиг всех вершин: α_20 = (15276384). Подгруппа Shift = <α_20> ≈ Z_8. Она ненормальна. С другой стороны, стабилизатор каждой вершины есть подгруппа изоморфная Z_2 × Z_2, ненормальная. Например, стабилизатор вершины 8, есть подгруппа Stab = <α_2, α_22> ≈ Z_2 × Z_2, порожденная 2-мя инволюциями α_2 = (35)(47) и α_22 = (16)(37)(45) (реализуемыми геометрически «симметриями относительно перпендикулярных прямых»). Эта подгруппа ненормальна.

Таким образом, группа Aut (АТГ) может быть порождена так: Aut (АТГ) =  = (Z_2 × Z_2) Z_8, где Z_2 × Z_2 и Z_8 — как указаны на предыдущем слайде, причем произведение на Z_8 не является прямым. Таким образом, |Aut (АТГ)| = |Shift| ∙ |Stab| : |Shift ∩ Stab| = 8 ∙ 4 : 1 = 32.
Слайд 5

Таким образом, группа Aut (АТГ) может быть порождена так: Aut (АТГ) = <α_2, α_22, α_20> = (Z_2 × Z_2) Z_8, где Z_2 × Z_2 и Z_8 — как указаны на предыдущем слайде, причем произведение на Z_8 не является прямым. Таким образом, |Aut (АТГ)| = |Shift| ∙ |Stab| : |Shift ∩ Stab| = 8 ∙ 4 : 1 = 32.

Бипирамидальный Тороидальный Гексадекаэдр (БТГ) — геометрическая модель АТГ С. А. Л., Все неприводимые триангуляции тора реализуются в E3 в виде многогран- ников, манускрипт, Мехмат МГУ (1983). Эта работа была выполнена под руко- водством профессора И. Х. Сабитова и заняла 2-е место в конкурсе научн
Слайд 6

Бипирамидальный Тороидальный Гексадекаэдр (БТГ) — геометрическая модель АТГ С. А. Л., Все неприводимые триангуляции тора реализуются в E3 в виде многогран- ников, манускрипт, Мехмат МГУ (1983). Эта работа была выполнена под руко- водством профессора И. Х. Сабитова и заняла 2-е место в конкурсе научных студенческих работ за 1983 год, ежегодно проводимом Мехматом МГУ.  Экватор у БТГ

Правильные многогранники в четырехмерном пространстве Слайд: 7
Слайд 7
Мы делаем четкое различие между понятиями «автоморфизм» и «симметрия». Далее, термин «симметрия» используется в широком смысле: для обозначения и настоящих симметрий, и вращений пространства. Ни один автоморфизм АТГ, кроме тождественного, не реализуется геометрически, т.е. движениями объемлющего 3-м
Слайд 8

Мы делаем четкое различие между понятиями «автоморфизм» и «симметрия». Далее, термин «симметрия» используется в широком смысле: для обозначения и настоящих симметрий, и вращений пространства. Ни один автоморфизм АТГ, кроме тождественного, не реализуется геометрически, т.е. движениями объемлющего 3-мерного пространства, переводящими БТГ в себя, поэтому Sym (БТГ) = { id }. Все автоморфизмы становятся скрытыми симметриями геометрической модели БТГ.

Хáролд Скотт МакДóналд («Доналд») Кокстер (1907—2003). Парадигма Кокстера Парадигма Кокстера «групп и геометрии» — это целостная система взглядов и положений по сближению и соединению алгебры с геометрией. Одно из этих положений состоит в том, что надо реализовывать геометрически не только сам комби
Слайд 9

Хáролд Скотт МакДóналд («Доналд») Кокстер (1907—2003).

Парадигма Кокстера Парадигма Кокстера «групп и геометрии» — это целостная система взглядов и положений по сближению и соединению алгебры с геометрией. Одно из этих положений состоит в том, что надо реализовывать геометрически не только сам комбинаторный или топологический объект, а также его автоморфизмы в виде геометрических симметрий его геометрической модели в пространстве. ■ H.S.M. Coxeter, Regular Complex Polytopes, Cambridge University Press, Cambridge, 2nd edit. 1991. ■ H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, Springer, Berlin 1980 (4th edit.)

Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы Кокстера. Многогранные реализации групп правильных карт на 2-мерных поверхностях — вклад в развитие этой парадигмы. Старая идея: Чтобы исключить скрытые симметрии, можно использовать модель Пуанкаре плоскости Лобачевского.  С. А. Л
Слайд 10

Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы Кокстера. Многогранные реализации групп правильных карт на 2-мерных поверхностях — вклад в развитие этой парадигмы. Старая идея: Чтобы исключить скрытые симметрии, можно использовать модель Пуанкаре плоскости Лобачевского.  С. А. Л., Plummer M.D., Zha X.: Isoperimetric constants of infinite plane graphs, Discrete & Computational Geometry 28 (3): 313-330 (2002)

Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы Кокстера. Новая идея: Но что, если настаивать на том, чтобы оставаться в евклидовом пространстве? Это возможно! Но только, если достаточно увеличить размерность этого пространства. (А не пытаться загнать объект в пространство заведо
Слайд 11

Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы Кокстера.

Новая идея: Но что, если настаивать на том, чтобы оставаться в евклидовом пространстве? Это возможно! Но только, если достаточно увеличить размерность этого пространства. (А не пытаться загнать объект в пространство заведомо меньшей размерности, как мы делали выше, строя БТГ.)

Тор Клиффорда: (x_1)² + (x_2)² = 1 = (x_3) ² + (x_4)². Для 2-мерного тора более подходит евклидово 4-мерное пространство, чем 3-мерное. Например, АТГ не удается вложить в 3-пространство без скрытых симметрий, а в 4-пространство уже можно. В 3-мерном пространстве тор переходит в себя только вращениям
Слайд 12

Тор Клиффорда: (x_1)² + (x_2)² = 1 = (x_3) ² + (x_4)². Для 2-мерного тора более подходит евклидово 4-мерное пространство, чем 3-мерное. Например, АТГ не удается вложить в 3-пространство без скрытых симметрий, а в 4-пространство уже можно. В 3-мерном пространстве тор переходит в себя только вращениями в направлении параллелей, а в 4-мерном пространстве также вращениями в направлении меридианов. http://alem3d.obidos.org/en/torusio/math

С. А. Л., Polyhedral suspensions of arbitrary genus, Graphs & Combinatorics, 26 (2010), в печати. Теорема (С. А. Л.): В евклидовом 4-мерном пространстве существует 2-мерный тороидальный многогранник с 8 вершинами и 16 треугольными гранями, имеющий следующие три свойства правильности. Этот многог
Слайд 13

С. А. Л., Polyhedral suspensions of arbitrary genus, Graphs & Combinatorics, 26 (2010), в печати. Теорема (С. А. Л.): В евклидовом 4-мерном пространстве существует 2-мерный тороидальный многогранник с 8 вершинами и 16 треугольными гранями, имеющий следующие три свойства правильности. Этот многогранник будет называться правильным тороидальным гексадекаэдром и будет обозначаться ПТГ. (1) Все грани ПТГ— равносторонние треугольники. (2) ПТГ не имеет скрытых симметрий в том смысле, что группа Aut (АТГ) точно представлена группой Sym (ПТГ) в 4-мерном пространстве. Группа Sym (ПТГ) действует транзитивно на множестве вершин ПТГ.

Доказательство: На рисунке справа — экватор БТГ переложен из 2-пространства в 3-пространство в геометрически симметричном виде, как 2-мерный подкомплекс октаэдра. Затем к координатам каждой вершины добавили четвертую координату w = 0, тем самым поместив экватор уже в 4-пространство. Две остающиеся в
Слайд 14

Доказательство: На рисунке справа — экватор БТГ переложен из 2-пространства в 3-пространство в геометрически симметричном виде, как 2-мерный подкомплекс октаэдра. Затем к координатам каждой вершины добавили четвертую координату w = 0, тем самым поместив экватор уже в 4-пространство. Две остающиеся вершины, 1 и 6, располагаются на четвертой координатной оси Ow и имеют координаты (0, 0, 0, 1) и (0, 0, 0, -1), соответственно.

1 (0, 0, 0, 1) — северный полюс 6 (0, 0, 0, -1) — южный полюс. АТГ реализовывается как подкомплекс 2-мерного скелета гексадекахорона (или 4-мерного гипероктаэдра) в 4-мерном пространстве. Восемь вершин гексадекахорона: (±1, 0, 0, 0), (0, ±1, 0, 0), (0, 0, ±1, 0), (0, 0, 0, ±1). Все вершины соединены
Слайд 15

1 (0, 0, 0, 1) — северный полюс 6 (0, 0, 0, -1) — южный полюс

АТГ реализовывается как подкомплекс 2-мерного скелета гексадекахорона (или 4-мерного гипероктаэдра) в 4-мерном пространстве. Восемь вершин гексадекахорона: (±1, 0, 0, 0), (0, ±1, 0, 0), (0, 0, ±1, 0), (0, 0, 0, ±1).

Все вершины соединены ребрами, кроме противолежащих пар. Значит все грани АТГ геометрически реализуются равносторонними треугольниками со стороной √2. Свойство (1) доказано. Докажем свойство (2), что все 32 автоморфизма триангуляции АТГ реализуются геометрически в 4D модели в виде ПТГ.

1 (0, 0, 0, 1) и 6 (0, 0, 0, -1). Вспомним, что Aut (АТГ) порож- дается тремя автоморфизмами: α_2 = (35) (47), α_22 = (16) (37) (45), α_20 = (15276384) и соответственно представима в 4-пространстве дискретной группой движений, порожденной следующими ортогональными матрицами: A_2 = A_22 = A_20 = ║ 1
Слайд 16

1 (0, 0, 0, 1) и 6 (0, 0, 0, -1)

Вспомним, что Aut (АТГ) порож- дается тремя автоморфизмами: α_2 = (35) (47), α_22 = (16) (37) (45), α_20 = (15276384) и соответственно представима в 4-пространстве дискретной группой движений, порожденной следующими ортогональными матрицами: A_2 = A_22 = A_20 = ║ 1 0 0 0║ ║ 1 0 0 0║ ║ 0 0 1 0║ ║ 0 -1 0 0║ ║ 0 0 -1 0║ ║ 1 0 0 0║ ║ 0 0 -1 0║ ║ 0 -1 0 0║ ║ 0 0 0 1║ ║ 0 0 0 1║ ║ 0 0 0 -1║ ║ 0 -1 0 0║

Таким образом, получено точное представление группы Aut (АТГ) степени 4. Где —специальная ортогональная группа степени 4, а — полная линейная группа степени 4, И, таким образом, все автоморфизмы реализуются только вращениями 4-мерного пространства. ■
Слайд 17

Таким образом, получено точное представление группы Aut (АТГ) степени 4. Где —специальная ортогональная группа степени 4, а — полная линейная группа степени 4, И, таким образом, все автоморфизмы реализуются только вращениями 4-мерного пространства. ■

Резюмируя, многогранники БТГ и ПТГ — различные геометрические модели абстрактной триангуляции тора АТГ. Первый — в трехмерном евклидовом пространстве, а второй — в четырехмерном. В 3D модели БТГ все автоморфизмы, кроме тождественного, являются скрытыми симметриями. Другими словами, индекс подгруппы
Слайд 18

Резюмируя, многогранники БТГ и ПТГ — различные геометрические модели абстрактной триангуляции тора АТГ. Первый — в трехмерном евклидовом пространстве, а второй — в четырехмерном. В 3D модели БТГ все автоморфизмы, кроме тождественного, являются скрытыми симметриями. Другими словами, индекс подгруппы симметрий в группе автоморфизмов = 32. В 4D модели ПТГ же, наоборот, все до единого автоморфизмы реализуются геометрически, т.е. индекс подгруппы симметрий = 1.

Открытые вопросы ■ Существуют ли другие правильные 2-мерные многогранники, кроме ПТГ, в (евклидовом) пространстве размерности 4 ? ■ А в пространствах высших размерностей? ■ Существуют ли в 3-мерном пространстве правильные многогранники топологических типов, отличных от сферы? Гипотеза: Нет.
Слайд 19

Открытые вопросы ■ Существуют ли другие правильные 2-мерные многогранники, кроме ПТГ, в (евклидовом) пространстве размерности 4 ? ■ А в пространствах высших размерностей? ■ Существуют ли в 3-мерном пространстве правильные многогранники топологических типов, отличных от сферы? Гипотеза: Нет.

Существуют ли другие правильные 2-мерные многогранники, кроме ПТГ, в пространствах размерностей ≥ 4 ? В частности, реализуется ли правильная триангуляция тора с полным графом K_7 в виде правильного многогранника в евклидовом пространстве высшей размерности?
Слайд 20

Существуют ли другие правильные 2-мерные многогранники, кроме ПТГ, в пространствах размерностей ≥ 4 ? В частности, реализуется ли правильная триангуляция тора с полным графом K_7 в виде правильного многогранника в евклидовом пространстве высшей размерности?

Теорема (Рингель и Янгс): Для каждого целого положительного n такого, что (n–3)(n–4) делится нацело на 12, полный граф K_n триангулирует ориентируемую поверхность рода (n–3)(n–4)/12. ■ Ringel G., Youngs J.W.T., Solution of the Heawood map-colouring problem Proc. Nat. Acad. Sci. USA, 60 (1968), 438—4
Слайд 21

Теорема (Рингель и Янгс): Для каждого целого положительного n такого, что (n–3)(n–4) делится нацело на 12, полный граф K_n триангулирует ориентируемую поверхность рода (n–3)(n–4)/12. ■ Ringel G., Youngs J.W.T., Solution of the Heawood map-colouring problem Proc. Nat. Acad. Sci. USA, 60 (1968), 438—445. Отправная лемма (С. А. Л.): Каждая такая триангуляция вкладывается в n-пространство так, что все грани реализуются изометричными равносторонними треугольниками. Доказательство: Вложить K_n в 1-скелет n-мерного гипероктаэдра. Например K_7 в 7-мерный гипероктаэдр. ■

Реализуются ли при этом геометрически все автоморфизмы триангуляции? Оказывается, будет вершинно-транзитивной группа автоморфизмов любой триангуляции тора, в которой степень каждой вершины = 6. Datta B., Upadhyay A.K.: Degree-regular triangulations of torus and Klein bottle, Proc. Indian Acad. Sci.
Слайд 22

Реализуются ли при этом геометрически все автоморфизмы триангуляции? Оказывается, будет вершинно-транзитивной группа автоморфизмов любой триангуляции тора, в которой степень каждой вершины = 6. Datta B., Upadhyay A.K.: Degree-regular triangulations of torus and Klein bottle, Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 279–307. Однако, это может быть легким следствием из результата Негами: Negami, S.: Uniqueness and faithfulness of embedding of toroidal graphs, Discrete Math. 44 (1983), 161-180.

Итак, что же такое правильный многогранник?? Что касается 2-мерных многогранников в евклидовом n-мерном пространстве, тот заслуживает звания «правильный», который: ■ правильный как абстрактная карта на 2-мерной поверхности, ■ имеет транзитивную (здесь возможны варианты) группу автоморфизмов и ■ не и
Слайд 23

Итак, что же такое правильный многогранник?? Что касается 2-мерных многогранников в евклидовом n-мерном пространстве, тот заслуживает звания «правильный», который: ■ правильный как абстрактная карта на 2-мерной поверхности, ■ имеет транзитивную (здесь возможны варианты) группу автоморфизмов и ■ не имеет скрытых симметрий.

Такое определение правильного многогранника предполагает более широкий класс многогранников, чем в классическом смысле. Исторически, когда ограничивались многогранниками в 3-мерном пространстве, нашли пять Платоновых тел. Затем, допустив самопересечения, нашли еще четыре правильных многогранника Кеп
Слайд 24

Такое определение правильного многогранника предполагает более широкий класс многогранников, чем в классическом смысле. Исторически, когда ограничивались многогранниками в 3-мерном пространстве, нашли пять Платоновых тел. Затем, допустив самопересечения, нашли еще четыре правильных многогранника Кеплера-Пуансо. Как и у Платоновых тел, ■ все их грани являются изометричными правильными многоугольниками, и ■ все их вершины идентичны

6 марта, 2009 г. Запуск ракеты Дельта II с Кеплером на поиск планет, в некотором отношении как наша собственная. Названный в честь немецкого ученого 17-го века Иоганна Кеплера, который открыл законы движения планет, НАСАвский космический аппарат Кеплер использует эти законы для поиска миров подобных
Слайд 25

6 марта, 2009 г. Запуск ракеты Дельта II с Кеплером на поиск планет, в некотором отношении как наша собственная. Названный в честь немецкого ученого 17-го века Иоганна Кеплера, который открыл законы движения планет, НАСАвский космический аппарат Кеплер использует эти законы для поиска миров подобных Земле вокруг удаленных звезд. Кеплер, ключевая фигура научной революции, думал, что Вселенная состоит из вложенных друг в друга Платоновых тел, вписанные в которых сферы определяют планетарные орбиты в нашей солнечной системе. Вместе, Платоновы тела и многогранники Кеплера-Пуансо образуют множество 9-ти правильных многогранников.

Многогранники Кеплера-Пуансо (не типа сферы!). Малый звездчатый додекаэдр. Большой звездчатый додекаэдр. Большой додекаэдр. Большой икосаэдр. В 1813 г. (или 1812 ??) Коши доказал, что кроме пяти Платоновых тел и четырех многогранников Кеплера-Пуансо больше нет правильных многогранников. Может быть К
Слайд 26

Многогранники Кеплера-Пуансо (не типа сферы!)

Малый звездчатый додекаэдр

Большой звездчатый додекаэдр

Большой додекаэдр

Большой икосаэдр

В 1813 г. (или 1812 ??) Коши доказал, что кроме пяти Платоновых тел и четырех многогранников Кеплера-Пуансо больше нет правильных многогранников. Может быть Коши подразумевал «в трехмерном пространстве»? A. L. Cauchy, Recherches sur les polyèdres; Premier mèmoire. J. Ècole Polytech. 9 (1813), 68 – 98.

■ Многогранник в 3-мерном пространстве с самопересечениями. (Сергей Петрович Новиков не признает многогранников с самопересечениями.) ■ У него 12 вершин, 30 ребер и 12 граней. (Для сравнения, у додекаэдра 20 вершин, 30 ребер и 12 граней.)
Слайд 27

■ Многогранник в 3-мерном пространстве с самопересечениями. (Сергей Петрович Новиков не признает многогранников с самопересечениями.) ■ У него 12 вершин, 30 ребер и 12 граней. (Для сравнения, у додекаэдра 20 вершин, 30 ребер и 12 граней.)

Мы же обобщаем по другому направлению: не допуская самопересечений, увеличиваем размерность объемлющего пространства. И находим еще один правильный многогранник — правильный тороидальный гексадекаэдр, ПТГ На рисунке слева изображено его сечение экваториальной гиперплоскостью Oxyz (с уравнением w = 0
Слайд 28

Мы же обобщаем по другому направлению: не допуская самопересечений, увеличиваем размерность объемлющего пространства. И находим еще один правильный многогранник — правильный тороидальный гексадекаэдр, ПТГ На рисунке слева изображено его сечение экваториальной гиперплоскостью Oxyz (с уравнением w = 0 ). Остается открытым вопрос о более элегантном пред- ставлении ПТГ картинкой.

Спасибо за внимание! Вопросы?
Слайд 29

Спасибо за внимание! Вопросы?

Список похожих презентаций

Алгебраические поверхности в пространстве

Алгебраические поверхности в пространстве

Цели и задачи. Цели: Рассмотреть основные понятия по теме «Алгебраические поверхности второго порядка в пространстве» Задачи: Рассмотреть понятие ...
"Векторы в пространстве"

"Векторы в пространстве"

Векторы в пространстве. Тема урока:. ТАБЛИЦА «Векторы в пространстве». ФИЗИКА. Направление движения тела. ЭЛЕКТРОТЕХНИКА. Движение заряженных частиц ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах. Цели урока:. Познакомиться с историей возникновения родного города Научиться определять временные промежутки и ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Ответьте на вопросы:. Какие системы называются НЕПОЗИЦИОННЫМИ? Какие системы называются ПОЗИЦИОННЫМИ? Какое число называют – ОСНОВАНИЕ позиционной ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

Самостоятельная работа. Вариант I Вариант II. Выполнить действия в двоичной системе счисления:. 1) 101012 + 1012 2) 101012 + 10102 3) 1000012 – 1102 ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
Больше в несколько раз, меньше в несколько раз

Больше в несколько раз, меньше в несколько раз

ЦЕЛЬ УРОКА. раскрытие смысла слов “больше (меньше) в несколько раз”. Расположите числа в порядке возрастания. 18, 9, 45, 27, 36, 72, 54, 63, 9, 18, ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Алгебра в 9 классе.

Алгебра в 9 классе.

Функция их свойства и графики. Сформулируйте определение чётной функции, определение нечётной функции. Не является ни чётной, ни нечётной. чётная ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
Биография М.В. Ломоносова в цифрах

Биография М.В. Ломоносова в цифрах

=2 =0,3 =3,6 =0,04 =1 =0,8 =0,42 =21,2 М И Ш А Н С К О Е. Ломоносов Родился в с. Мишанинском Архангельской губернии. 8 ноября 1711. Длина = 15,5 м ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...

Конспекты

Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:26 сентября 2019
Категория:Математика
Содержит:29 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации