- Правильные и полуправильные многогранники

Презентация "Правильные и полуправильные многогранники" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22

Презентацию на тему "Правильные и полуправильные многогранники" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 22 слайд(ов).

Слайды презентации

Правильные и полуправильные многогранники. Тела Архимеда.
Слайд 1

Правильные и полуправильные многогранники. Тела Архимеда.

СОДЕРЖАНИЕ. Правильные и полуправильные многогранники Тела Архимеда Леонардо да Винчи
Слайд 2

СОДЕРЖАНИЕ

Правильные и полуправильные многогранники Тела Архимеда Леонардо да Винчи

Правильным многогранником называется выпуклый многогранник, грани которого – равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой. Доказано, что в каждой из вершин правильного многогранника сходится одно и то же число граней и одно и то же число ребер. Всего в прир
Слайд 3

Правильным многогранником называется выпуклый многогранник, грани которого – равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой. Доказано, что в каждой из вершин правильного многогранника сходится одно и то же число граней и одно и то же число ребер. Всего в природе существует пять правильных многогранников. По сравнению с количеством правильных многоугольников это – очень мало: для каждого целого n>2 существует один правильный n-угольник, т.е. правильных многоугольников – бесконечно много. Правильные многогранники имеют названия по числу граней: тетраэдр (4 грани): гексаэдр (6 граней), октаэдр (8 граней), додекаэдр (12 граней) и икосаэдр (20 граней).

Правильные и полуправильные многогранники

По-гречески "хедрон" означает грань, "тетра", "гекса" и т. д. – указанные числа граней. Нетрудно догадаться, что гексаэдр есть не что иное, как всем знакомый куб. Грани тетраэдра, октаэдра и икосаэдра – правильные треугольники, куба – квадраты, додекаэдра – правильные п
Слайд 4

По-гречески "хедрон" означает грань, "тетра", "гекса" и т. д. – указанные числа граней. Нетрудно догадаться, что гексаэдр есть не что иное, как всем знакомый куб. Грани тетраэдра, октаэдра и икосаэдра – правильные треугольники, куба – квадраты, додекаэдра – правильные пятиугольники.

Если обозначить количество углов у одной грани правильного многогранника за q, а количество граней, сходящихся в одной вершине – за p, можно получить точные характеристики каждого правильного многогранника. Вот они (первое число – q, второе – p): (3;3), (3;4), (4;3), (3;5), (5;3). При этом у куба и
Слайд 5

Если обозначить количество углов у одной грани правильного многогранника за q, а количество граней, сходящихся в одной вершине – за p, можно получить точные характеристики каждого правильного многогранника. Вот они (первое число – q, второе – p): (3;3), (3;4), (4;3), (3;5), (5;3). При этом у куба и октаэдра, а также у икосаэдра и додекаэдра, числа p и q оказываются как бы переставленными. Эти многогранники называют двойственными. Тетраэдр считается двойственным сам себе. У двойственных многогранников количество ребер одинаковое.

Правильные многогранники симметричны. Это означает, что для любого произвольно выбранного ребра AB и примыкающей к нему грани F можно так повернуть многогранник, что ребро AB перейдет в любой отличное от него ребро CD, точка A – в любой его конец (C или D), а грань F совпадет с одной из двух примыка
Слайд 6

Правильные многогранники симметричны. Это означает, что для любого произвольно выбранного ребра AB и примыкающей к нему грани F можно так повернуть многогранник, что ребро AB перейдет в любой отличное от него ребро CD, точка A – в любой его конец (C или D), а грань F совпадет с одной из двух примыкающих к нему граней. Таких возможных поворотов – самосовмещений всего существует 4P, где P – число ребер многогранника. При этом половина из них – повороты вокруг воображаемых осей, соединяющих центр многогранника с его вершинами, серединами ребер и граней на углы, кратные соответственно 2 / q,  и 2 / p, а другая половина – симметрии относительно плоскостей и "зеркальные повороты". Указанное "свойство максимальной симметричности" иногда принимают за определение правильного многогранника. Но человеку, далекому от математики, трудно представить себе геометрическое тело с таким определением.

Иоганн Кеплер называл куб "родителем" всех правильных многогранников. На основе куба он смог построить все другие виды правильных многогранников. Если провести в противоположных гранях куба скрещивающиеся диагонали, то их концы окажутся вершинами тетраэдра, а вершины октаэдра – это центры
Слайд 7

Иоганн Кеплер называл куб "родителем" всех правильных многогранников. На основе куба он смог построить все другие виды правильных многогранников. Если провести в противоположных гранях куба скрещивающиеся диагонали, то их концы окажутся вершинами тетраэдра, а вершины октаэдра – это центры граней куба. Полученные многоугольники действительно правильные, так как их грани – правильные треугольники. Равенство же двугранных углов следует из того, что при повороте куба ребро многогранника можно перевести в любое другое.

Для того, чтобы построить икосаэдр, на каждой грани куба нужно построить отрезок длиной x (пока что это – любая длина) так, чтобы он был параллелен двум сторонам своей грани и перпендикулярен таким же отрезкам на соседних гранях. Середина его должна совпадать с центром грани. Соединим концы этих отр
Слайд 8

Для того, чтобы построить икосаэдр, на каждой грани куба нужно построить отрезок длиной x (пока что это – любая длина) так, чтобы он был параллелен двум сторонам своей грани и перпендикулярен таким же отрезкам на соседних гранях. Середина его должна совпадать с центром грани. Соединим концы этих отрезков между собой, и мы получим двадцатигранник, грани которого – треугольники, и при каждой вершине их пять. Найдем такое число x, при котором все ребра этого многогранника равны, т. е. он правильный. Т.к. куб симметричен, то все ребра, не принадлежащие граням куба равны между собой. Примем длину ребра куба за a. Рассмотрим треугольник ABC (рис. 2), где AC = a – x, BC2 = CD2 + BD2 = 1/4 a2 + 1/4 x2. По теореме Пифагора получаем: AB2 = AC2 + CB2 = ( x2 + a2 + (a – x)2 ) / 4. Приравнивая AB к x, получаем квадратное уравнение: x2 + a x – a2 = 0, откуда x = a ( 5 – 1) / 2. Интересно, что полученный множитель при a, т. е. отношение ребра куба к ребру вписанного в него икосаэдра – не что иное, как золотое сечение.

Теперь докажем равенство двугранных углов. Рассмотрим 5 ребер, выходящих из точки A. Концы их всех равноудалены и от точки A, и от центра куба O. Отсюда следует, что они лежат на пересечении двух сфер с центрами A и O, а значит – на окружности, причем ребра, соединяющие их с точкой A, равны. Значит,
Слайд 9

Теперь докажем равенство двугранных углов. Рассмотрим 5 ребер, выходящих из точки A. Концы их всех равноудалены и от точки A, и от центра куба O. Отсюда следует, что они лежат на пересечении двух сфер с центрами A и O, а значит – на окружности, причем ребра, соединяющие их с точкой A, равны. Значит, эти пять точек и точка a – вершины правильной пирамиды, а ее двугранные углы при вершине равны. Додекаэдр из икосаэдра можно получить так же, как и октаэдр из куба. соединяя середины смежных граней икосаэдра, мы получаем правильный пятиугольник. Всего таких пятиугольников будет 12. Двугранные углы многоугольника будут равны, так как трехгранные углы при его вершинах имеют равные плоские углы.

Правильные многогранники также называют платоновыми телами, хотя они были известны еще за несколько веков до Платона. В одном из своих диалогов Платон связал правильные многоугольники с четырьмя стихиями. Тетраэдру соответствовал огонь, кубу – земля, октаэдру – воздух, икосаэдру – вода. Додекаэдру с
Слайд 10

Правильные многогранники также называют платоновыми телами, хотя они были известны еще за несколько веков до Платона. В одном из своих диалогов Платон связал правильные многоугольники с четырьмя стихиями. Тетраэдру соответствовал огонь, кубу – земля, октаэдру – воздух, икосаэдру – вода. Додекаэдру соответствовала пятая стихия – эфир. Так называемые полуправильные многогранники связывают с именем Архимеда. Это 13 тел, полученных при усечении правильных многогранников и два бесконечных ряда правильных призм и антипризм с равными ребрами.

В эпоху Возрождения ученый Иоганн Кеплер вслед за Платоном попытался связать правильные многогранники со строением Вселенной. С большей или меньшей точностью он разместил между сферами, содержащими орбиты шести известных планет, правильные многогранники таким образом, что каждый был описан около мен
Слайд 11

В эпоху Возрождения ученый Иоганн Кеплер вслед за Платоном попытался связать правильные многогранники со строением Вселенной. С большей или меньшей точностью он разместил между сферами, содержащими орбиты шести известных планет, правильные многогранники таким образом, что каждый был описан около меньшей сферы и вписан в большую. Но имя Кеплера в геометрии прославило открытие двух из четырех правильных звездных тел. Два других в 1809 г. нашел француз Луи Пуансон.

Правильные многогранники. Тетраэдр Куб Октаэдр Додекаэдр Икосаэдр
Слайд 12

Правильные многогранники

Тетраэдр Куб Октаэдр Додекаэдр Икосаэдр

Получение правильных многогранников из куба
Слайд 13

Получение правильных многогранников из куба

Архимедово тело, образованное из икосаэдра. Одно из звездных тел
Слайд 14

Архимедово тело, образованное из икосаэдра

Одно из звездных тел

Тела Архимеда
Слайд 15

Тела Архимеда

Архимедовыми телами называются полуправильные, однородные выпуклые многогранники, т.е. выпуклые многогранники, все многогранные углы которых равны, а грани -- правильные многоугольники нескольких типов ( этим они отличаются от Платоновых тел, грани которых правильные многоугольники одного типа). Отк
Слайд 16

Архимедовыми телами называются полуправильные, однородные выпуклые многогранники, т.е. выпуклые многогранники, все многогранные углы которых равны, а грани -- правильные многоугольники нескольких типов ( этим они отличаются от Платоновых тел, грани которых правильные многоугольники одного типа). Открытие четырнадцати полуправильных многогранников приписывается Архимеду ( 287-212 г. до н.э. ), который впервые перечислил их свойства в не дошедшей до нас работе. Ссылки на эту работу имеются в трудах математика Паппа. Теорией этих тел занимался также Кеплер.

Архимедовы тела
Слайд 17

Архимедовы тела

Из нижеприведенного рисунка видно получение усеченного икосаэдра из платонова икосаэдра отсечением у каждой вершины 12 частей плоскостью.
Слайд 18

Из нижеприведенного рисунка видно получение усеченного икосаэдра из платонова икосаэдра отсечением у каждой вершины 12 частей плоскостью.

Леонардо да Винчи. Оригинальный способ пространственного изображения усечённого икосаэдра предложил Леонардо да Винчи. Изображение усечённого икосаэдра мы можем встретить в иллюстрированной Леонардо книге его современника, францисканского монаха и математика Луки Пачоли (1445-1514) «Божественная про
Слайд 19

Леонардо да Винчи

Оригинальный способ пространственного изображения усечённого икосаэдра предложил Леонардо да Винчи. Изображение усечённого икосаэдра мы можем встретить в иллюстрированной Леонардо книге его современника, францисканского монаха и математика Луки Пачоли (1445-1514) «Божественная пропорция» («De Devina Proportione»), изданной в 1509 г. Титан Возрождения, живописец, скульптор, ученый и изобретатель Леонардо да Винчи (1452-1519) — символ неразрывности искусства и науки, а следовательно, закономерен его интерес к таким прекрасным, высокосимметричным объектам, как выпуклые многогранники вообще и усеченный икосаэдр в частности.

Геометрия кисти Леонардо. Поистине, живопись — наука и законная дочь природы, ибо она порождена природой.
Слайд 20

Геометрия кисти Леонардо. Поистине, живопись — наука и законная дочь природы, ибо она порождена природой.

Гравюру с изображением усеченного икосаэдра Леонардо предваряет надписью по латыни Ycocedron Abscisus (усеченный икосаэдр) Vacuus. Термин Vacuus обозначает тот факт, что грани многогранника изображены «пустыми» — не сплошными. Строго говоря, грани не изображаются вовсе, они существуют только в нашем
Слайд 21

Гравюру с изображением усеченного икосаэдра Леонардо предваряет надписью по латыни Ycocedron Abscisus (усеченный икосаэдр) Vacuus. Термин Vacuus обозначает тот факт, что грани многогранника изображены «пустыми» — не сплошными. Строго говоря, грани не изображаются вовсе, они существуют только в нашем воображении. Зато ребра многогранника изображены не геометрическими линиями (которые, как известно, не имеют ни ширины, ни толщины), а жесткими трехмерными сегментами. Обе эти особенности данной гравюры и составляют основу способа пространственного изображения многогранников, изобретенного Леонардо для иллюстрации книги Луки Пачоли и называемого сегодня методом жестких (или сплошных) ребер. Такая техника позволяет зрителю, во-первых, безошибочно определить, какие из ребер принадлежат передним, а какие — задним граням многогранника (что практически невозможно при изображении ребер геометрическими линиями), и, во-вторых, взглянуть как бы сквозь геометрическое тело, ощутить его в перспективе, глубине, которые теряются при использовании техники сплошных граней.

Изображения Леонардо да Винчи додекаэдра методом жёстких рёбер (а) и методом сплошных граней (б) в книге Луки Пачоли «Божественные пропорции».
Слайд 22

Изображения Леонардо да Винчи додекаэдра методом жёстких рёбер (а) и методом сплошных граней (б) в книге Луки Пачоли «Божественные пропорции».

Список похожих презентаций

Правильные и полуправильные многогранники

Правильные и полуправильные многогранники

Учение о правильных многогранниках изложил в своих трудах Платон. С тех пор правильные многогранники называют Платоновыми телами. Существует пять ...
Полуправильные многогранники

Полуправильные многогранники

Полуправильный многогранник -многогранник, у которого все его многогранные углы равны между собой (но не обязательно правильные), а все его грани- ...
Правильные выпуклые многогранники

Правильные выпуклые многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...
Платоновы тела Правильные выпуклые многогранники

Платоновы тела Правильные выпуклые многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...
Паркеты. Правильные, полуправильные

Паркеты. Правильные, полуправильные

Паркет – это покрытие плоскости многоугольниками без пропусков и наложений. паркет. Из каких правильных многоугольников можно составить паркет? попытка ...
Правильные многогранники

Правильные многогранники

Определение:. Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий ...
Правильные многогранники

Правильные многогранники

Что такое правильный многогранник? Правильный многогранник - многогранник, все грани которого - одинаковые правильные многоугольники и все многогранные ...
Правильные многогранники

Правильные многогранники

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук. Л. Кэрролл. ...
Правильные многогранники

Правильные многогранники

Многогранник- это тело, поверхность которого состоит из конечного числа плоских многоугольников. Грани многогранника - это многоугольники, которые ...
Симметрия в пространстве. Правильные многогранники

Симметрия в пространстве. Правильные многогранники

СИММЕТРИЯ В ПРОСТРАНСТВЕ. «Симметрия … есть идея, с помощью которой человек веками пытался объяснить и создать порядок, красоту и совершенство». Герман ...
Правильные многогранники

Правильные многогранники

Определение правильного многогранника. Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и ...
Правильные многогранники

Правильные многогранники

Определение:. правильный многогранник - такой выпуклый многогранник, все грани которого являются одинаковыми правильными многоугольниками и все двугранные ...
Правильные многогранники в четырехмерном пространстве

Правильные многогранники в четырехмерном пространстве

Абстрактный Тороидальный Гексадекаэдр — это комбинаторно-топологический объект — правильная триангуляция тора с 8 вершинами и 16 гранями. С. А. Л., ...
Правильные многогранники и их приметы

Правильные многогранники и их приметы

Многогранник называется правильным если:. 1) ОН ВЫПУКЛЫЙ. (Т.Е. ЛЕЖИТ ПО ОДНУ СТОРОНУ ОТ ПЛОСКОСТИ КАЖДОЙ ГРАНИ). 2) ВСЕ ЕГО ГРАНИ – РАВНЫЕ ПРАВИЛЬНЫЕ ...
Правильные многогранники в геометрии

Правильные многогранники в геометрии

Цели: Знакомить учащихся с новым типом многогранников - правильными многогранниками. Показать влияние правильных многогранников на возникновение филосовских ...
Правильные многогранники в жизни

Правильные многогранники в жизни

Цели:. Изучить виды, свойства правильных многогранников Рассмотреть использование геометрических тел в архитектуре Изучить один из видов искусства ...
Правильные многогранники и их построение

Правильные многогранники и их построение

Цели и задачи:. Дать понятие правильных многогранников ( на основе определения многогранников). Доказать почему существует только 5 типов правильных ...
Правильные многогранники и их развертки

Правильные многогранники и их развертки

Цели урока:. Познакомить учащихся с правильными многогранниками и их развертками, показать их в объеме и в движении, а также показать возможности ...
Правильные многогранники

Правильные многогранники

СИММЕТРИЯ В ПРОСТРАНСТВЕ. “Симметрия является той идеей, посредством которой человек пытался постичь и создать порядок, красоту и совершенство” (Г.Вейль). ...
Правильные многогранники

Правильные многогранники

Первым свойства правильных многогранников описал древнегреческий ученый Платон. Именно поэтому правильные многогранники называют также телами Платона. ...

Конспекты

Правильные многогранники

Правильные многогранники

Урок геометрии в 11 классе. «Правильные многогранники». Учитель математики КГУ «Гимназия №6 г. Семей» Бочарова Галина Борисовна. Цель: Знакомство ...
Правильные многогранники

Правильные многогранники

Урок по теме: «Правильные многогранники». Тип урока:. изучение нового материала. Продолжительность урока. : 2 урока по 45 минут. Цель урока:. ...
Правильные многогранники

Правильные многогранники

2. . . Конспект урока геометрии с применением ИКТ в 10 классе. Тема:. Правильные многогран. ники. Цели урока:. Предметный компонент:. Изучение ...
Правильные многогранники

Правильные многогранники

Муниципальное общеобразовательное учреждение. . средняя общеобразовательная школа №5. Урок геометрии в 11 классе. «Правильные многогранники». ...
Правильные многогранники

Правильные многогранники

Тема урока: "Правильные многогранники". (10 класс). Учитель математики Иманова Алена Викторовна. МБОУ «Средняя общеобразовательная школа №21». ...
Правильные многогранники. Тела Архимеда. Тела Кеплера-Пуансо

Правильные многогранники. Тела Архимеда. Тела Кеплера-Пуансо

. . . . . . дисциплина. : геометрия. План урока. № 13-14. Тема урока:. Правильные многогранники. Тела Архимеда. Тела Кеплера-Пуансо. ...
Обыкновенные дроби. Правильные и неправильные дроби

Обыкновенные дроби. Правильные и неправильные дроби

Методическая разработка урока проверки знаний. Урок математики в 5-м классе. Повторение по теме "Обыкновенные дроби. Правильные и неправильные дроби". ...
Правильные многоугольники

Правильные многоугольники

ФИО автора материала: Мосолкова Людмила Васильевна. . Место работы (название образовательного учреждения: МБОУ г. Магадана «СОШ с УИМ № 15». . ...
Правильные и неправильные дроби

Правильные и неправильные дроби

План-конспект урока. . Учителя. математики и информатики. . МБОУ СОШ. №20. ФИО. Лютова Ирины Сергеевны.  . Класс: 5. Предмет: математика. ...
Правильные и неправильные дроби

Правильные и неправильные дроби

Солдатова. . Ирина Валерьевна. I. квалификационная категория. Самарская область Исаклинский район с. Исаклы. ГБОУ СОШ с. Исаклы. Математика. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.