- Задачи по многочленам

Презентация "Задачи по многочленам" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Задачи по многочленам" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

Многочлены. Решение олимпиадных задач по теме «Многочлены»
Слайд 1

Многочлены. Решение олимпиадных задач по теме «Многочлены»

Понятие многочлена. Многочлен n-ой степени. Разложения многочлена на множители. Схема Горнера Умножения многочленов Деление многочленов Алгоритм Евклида Основная теорема Алгебры. Корни многочлена. Теорема Безу Следствие из Теоремы Безу Теорема о корнях многочлена. Теория
Слайд 2

Понятие многочлена. Многочлен n-ой степени. Разложения многочлена на множители. Схема Горнера Умножения многочленов Деление многочленов Алгоритм Евклида Основная теорема Алгебры. Корни многочлена. Теорема Безу Следствие из Теоремы Безу Теорема о корнях многочлена.

Теория

Многочлен ах + b, где а ≠0, a, b − числа, x − переменная, называется многочленом первой степени. Многочлен ах2+bх+с, где а ≠0, a, b, c − числа, x − переменная, называется многочленом второй степени (квадратным трёхчленом, квадратичной функцией). Многочлен ах3+bх2+сх+d, где а ≠0, a, b, c, d − числа,
Слайд 3

Многочлен ах + b, где а ≠0, a, b − числа, x − переменная, называется многочленом первой степени. Многочлен ах2+bх+с, где а ≠0, a, b, c − числа, x − переменная, называется многочленом второй степени (квадратным трёхчленом, квадратичной функцией). Многочлен ах3+bх2+сх+d, где а ≠0, a, b, c, d − числа, x − переменная, называется многочленом третьей степени. Многочлен: Pn(x) =anxn + an – 1x n – 1 + an – 2xn –2 + ... + a1x + a0, где an ≠0, аk=0,1,2,..,n-числа, х- переменная, называется многочленом n-ной степени. аn-старший коэффициент, а0-свободный член.

Действительное число a называется корнем многочлена Pn(x), если Pn(a) = 0. Число α-k-кратный корень многочлена f(x), если f(x)=(x-α)kφ(x), φ(α)≠0. Необходимые теоретические выдержки для разложения многочлена на множители. Теорема. Любой многочлен степени n вида Pn(x) =anxn + an – 1x n – 1 + an – 2xn
Слайд 4

Действительное число a называется корнем многочлена Pn(x), если Pn(a) = 0. Число α-k-кратный корень многочлена f(x), если f(x)=(x-α)kφ(x), φ(α)≠0. Необходимые теоретические выдержки для разложения многочлена на множители. Теорема. Любой многочлен степени n вида Pn(x) =anxn + an – 1x n – 1 + an – 2xn –2 + ... + a1x + a0 , представляется произведением постоянного множителя при старшей степени аn и n линейных множителей (х-хi), i=1, 2, …, n, то есть Pn(x)= аn(х-хn)(х-хn-1)…(х-х1), причём хi, i=1, 2, …, n являются корнями многочлена.

Схема Горнера. Если f(x)=a0xn+a1xn-1+…+an-1x+an, g(x)=x-c, то при делении f(x) на g(x) частное q(x) имеет вид g(x)=b0xn-1+b1xn-2+…+bn-2x+bn-1, где b0=0, bk=cbk-1 +ak, k=1,2…,n-1. Остаток r находится по формуле r=cbn-1+an
Слайд 5

Схема Горнера.

Если f(x)=a0xn+a1xn-1+…+an-1x+an, g(x)=x-c, то при делении f(x) на g(x) частное q(x) имеет вид g(x)=b0xn-1+b1xn-2+…+bn-2x+bn-1, где b0=0, bk=cbk-1 +ak, k=1,2…,n-1. Остаток r находится по формуле r=cbn-1+an

Умножение многочленов. Pn(x)Qm(x). Пусть Pn(x) и Qm(x) два многочлена степени n и m cответственно. Pn(x)=anxn+an-1xn-1+…+a0, Qm(x)=bmxm+bm-1xm-1+…+b0, Предположим, что n≥ m. Pn(x)Qm(x)=(anxn+an-1xn-1+…+a0)(bmxm+bm-1xm-1+…+b0)= anxn(bmxm+bm-1xm-1 +…+b0)+an-1xn-1(bmxm+ +bm-1xm- 1+…+b0)+…+ a0 (bmxm+bm-
Слайд 6

Умножение многочленов. Pn(x)Qm(x)

Пусть Pn(x) и Qm(x) два многочлена степени n и m cответственно. Pn(x)=anxn+an-1xn-1+…+a0, Qm(x)=bmxm+bm-1xm-1+…+b0, Предположим, что n≥ m. Pn(x)Qm(x)=(anxn+an-1xn-1+…+a0)(bmxm+bm-1xm-1+…+b0)= anxn(bmxm+bm-1xm-1 +…+b0)+an-1xn-1(bmxm+ +bm-1xm- 1+…+b0)+…+ a0 (bmxm+bm-1xm-1+…+b0).

Деление многочленов. Делитель многочлена f(x) - многочлен g(x), такой, что f(x) = g(x)q(x)+r(x).
Слайд 7

Деление многочленов.

Делитель многочлена f(x) - многочлен g(x), такой, что f(x) = g(x)q(x)+r(x).

Историческая справка. Алгоритм Евклида. Древнегреческие математики называли этот алгоритм «взаимное вычитание». Этот алгоритм не был открыт Евклидом, так как упоминание о нём имеется уже в Топике Аристотеля. В «Началах Евклида» он описан дважды — в VII книге для нахождения наибольшего общего делител
Слайд 8

Историческая справка. Алгоритм Евклида.

Древнегреческие математики называли этот алгоритм «взаимное вычитание». Этот алгоритм не был открыт Евклидом, так как упоминание о нём имеется уже в Топике Аристотеля. В «Началах Евклида» он описан дважды — в VII книге для нахождения наибольшего общего делителя двух натуральных чисел и в X книге для нахождения наибольшей общей меры двух однородных величин. В обоих случаях дано геометрическое описание алгоритма, для нахождения «общей меры» двух отрезков. Историками математики было выдвинуто предположение, что именно с помощью алгоритма Евклида (процедуры последовательного взаимного вычитания) в древнегреческой математике впервые было открыто существование несоизмеримых величин (стороны и диагонали квадрата, или стороны и диагонали правильного пятиугольника). Впрочем, это предположение не имеет достаточных документальных подтверждений.

Евклид Аристотель

Алгоритм Евклида (алгоритм последовательного деления) нахождения наибольшего общего делителя многочленов f(x) и g(x). Тогда rk(x)- наибольший общий делитель f(x) и g(x).
Слайд 9

Алгоритм Евклида (алгоритм последовательного деления) нахождения наибольшего общего делителя многочленов f(x) и g(x)

Тогда rk(x)- наибольший общий делитель f(x) и g(x).

Основная теорема алгебры. Всякий многочлен степени n имеет по крайней мере один корень (комплексный или действительный). Теорема Безу. Корни многочлена. При делении P(x) на (x-α) в остатке может получится лишь некоторое число r (если r=0, то деление выполняется без остатка). Так как степень двучлена
Слайд 10

Основная теорема алгебры. Всякий многочлен степени n имеет по крайней мере один корень (комплексный или действительный). Теорема Безу. Корни многочлена. При делении P(x) на (x-α) в остатке может получится лишь некоторое число r (если r=0, то деление выполняется без остатка). Так как степень двучлена (x-α) равна 1, то степень остатка должна быть меньше 1. P(x)= (x-α) Q(x)+r (1) Чтобы найти значение r, положим в тождестве (1) х= α. При этом двучлен x-α обращается в нуль, получаем, что P(α)=r.

Следствие из теоремы Безу. Если число α является корнем многочлена P(x), то этот многочлен делится на x-α без остатка. По теореме Безу остаток от деления P(x) на x-α равен P(α), а по условию P(α)=0. Отсюда видно, что задача решения уравнения P(x)=0 равносильна задаче выделения делителей многочлена Р
Слайд 11

Следствие из теоремы Безу. Если число α является корнем многочлена P(x), то этот многочлен делится на x-α без остатка.

По теореме Безу остаток от деления P(x) на x-α равен P(α), а по условию P(α)=0. Отсюда видно, что задача решения уравнения P(x)=0 равносильна задаче выделения делителей многочлена Р, имеющих первую степень (линейных делителей).

Если многочлен P(x) имеет попарно различные корни α1, α2, …, αn, то он делится без остатка на произведение (х- α1)…(х- αn). Проведём доказательство с помощью математической индукции по числу корней. При n=1 утверждение доказано в следствии из Теоремы Безу. Пусть оно уже доказано для случая, когда чи
Слайд 12

Если многочлен P(x) имеет попарно различные корни α1, α2, …, αn, то он делится без остатка на произведение (х- α1)…(х- αn)

Проведём доказательство с помощью математической индукции по числу корней. При n=1 утверждение доказано в следствии из Теоремы Безу. Пусть оно уже доказано для случая, когда число корней равно k, и пусть P(х) имеет k+1 попарно различных корней: α1, α2,…, αk, αk+1. По предположению индукции многочлен делится на произведении (х- α1)…(х- αk): P(x)=(x- α1)…( х- αk)Q(x). При этом αk+1 - корень многочлена P(x), т.е. P(αk+1) =0. Значит, подставляя αk+1 вместо х, получаем верное равенство. P(αk+1)= (αk+1 –α1)…( αk+1 –αk)Q(αk+1)=0. Но αk+1 по условию отлично от чисел α1,…, αk, и => ни одно из чисел αk+1 –α1,…, αk+1 –αk ≠0. Значит Q(αk+1)=0, т.е. αk+1 – корень многочлена Q(х). По следствию из Теоремы Безу Q(х) делится на х-αk+1 без остатка, Q(х)= (х- αk+1) Q1(х), и поэтому P(x)= (х- α1)…(х- αk) Q(х)= (х- α1)…(х- αk)(х-αk+1) Q1(х). Это и значит, что P(x)делится на (х- α1)…(х- αk+1). Итак, доказано, что теорема верна при k=1, а из ее справедливости при n=k вытекает, что она верна и при n=k+1. теорема верна при любом случае корней.

Задача №1 (на нахождение корней) Задача №2 Задача №3 (нахождение корней 3хчлена) Задача №4 Задача №5 (нахождение параметра) Задача №6 Задача №7 Задача №8(нахождение неизвестных по условию на корни и одно из неизвестных). Задачи
Слайд 13

Задача №1 (на нахождение корней) Задача №2 Задача №3 (нахождение корней 3хчлена) Задача №4 Задача №5 (нахождение параметра) Задача №6 Задача №7 Задача №8(нахождение неизвестных по условию на корни и одно из неизвестных)

Задачи

Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа a2+2cd+b2 и c2+2ab+d2 являются полными квадратами. Предположим, что ab=cd. Тогда a2+2cd+b2=a2+2ab+b2=(a+b)2, c2+2ab+d2=c2+2cd+d2=(c+d)2. Таким образом, достаточно найти четыре различных натуральных числа a,
Слайд 14

Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа a2+2cd+b2 и c2+2ab+d2 являются полными квадратами.

Предположим, что ab=cd. Тогда a2+2cd+b2=a2+2ab+b2=(a+b)2, c2+2ab+d2=c2+2cd+d2=(c+d)2. Таким образом, достаточно найти четыре различных натуральных числа a, b, c и d, для которых ab=cd. Для этого найдем число n, разлагающееся в произведение двух множителей различными способами. Например, таким числом является n=6; в этом случае можно взять a=1, b=6, c=2, d=3. Ответ: 1,2,3,6

Найти все целые неотрицательные значения n и k, удовлетворяющие уравнению 5n4+k5=81k. 5n4+k5=81k, nϵZ, kϵZ, k≥0, n≥0.* 5n4=81k-k5 5n4= k(3-k)(3+k)(9+k2) Т.к 5n4≥0, то k(3-k)(3+k)(9+k2)≥0 0≤k≤3 Если k=0, 5n4=0, n=0. Если k=1, 5n4=80, n4=16, n=2; n=-2(не удовл. условию*) Если k=2, 5n4=162-32, 5n4=130,
Слайд 15

Найти все целые неотрицательные значения n и k, удовлетворяющие уравнению 5n4+k5=81k

5n4+k5=81k, nϵZ, kϵZ, k≥0, n≥0.* 5n4=81k-k5 5n4= k(3-k)(3+k)(9+k2) Т.к 5n4≥0, то k(3-k)(3+k)(9+k2)≥0 0≤k≤3 Если k=0, 5n4=0, n=0. Если k=1, 5n4=80, n4=16, n=2; n=-2(не удовл. условию*) Если k=2, 5n4=162-32, 5n4=130, n4=26 ø Если k=3, 5n4=0, n=0. Ответ:k=0,n=0;k=1,n=2;k=3,n=3.

-3 0 3 0≤k≤3

Квадратный трёхчлен f(x)=x2+px=q имеет 2 различных целых корня. Один из корней трёхчлена и его значение при х=11 являются простыми числами. Найти корни трёхчлена. Пусть х1 и х2- корни многочлена, f(x)=(x-x1)(x-x2) а) пусть х1=2-простой корень f(11)=(11-x1)(11-x2)-простой по условию(противоречие) f(1
Слайд 16

Квадратный трёхчлен f(x)=x2+px=q имеет 2 различных целых корня. Один из корней трёхчлена и его значение при х=11 являются простыми числами. Найти корни трёхчлена.

Пусть х1 и х2- корни многочлена, f(x)=(x-x1)(x-x2) а) пусть х1=2-простой корень f(11)=(11-x1)(11-x2)-простой по условию(противоречие) f(11)= g(11-х2) - составное б) пусть х1-нечётное f(11)=(11-x1)(11-x2)-простое, (11-x1)(11-x2)=2 11-х1=1 11-х1=-1 11-х1=2 11-х1=-2 11-х2=2 11-х2=-2 11-х2=1 11-х2=-1 х1=10 х1=12 х1=9 х1=13 х2=9 х2=13 х2=10 х2=12 Ответ: х1=13,х2=12.

{

Найдите целые числа x и y, удовлетворяющие уравнению x4-2y2=1. Знаки x и y можно выбирать произвольно, поэтому будем искать только неотрицательные решения. Ясно, что x - нечётное число, x=2t+1. Перепишем уравнение в виде x4-1=(x-1)(x+1)(x2+1)=2t(2t+2)(4t2+4t+2)=2y2. Теперь видно, что y - чётное числ
Слайд 17

Найдите целые числа x и y, удовлетворяющие уравнению x4-2y2=1.

Знаки x и y можно выбирать произвольно, поэтому будем искать только неотрицательные решения. Ясно, что x - нечётное число, x=2t+1. Перепишем уравнение в виде x4-1=(x-1)(x+1)(x2+1)=2t(2t+2)(4t2+4t+2)=2y2. Теперь видно, что y - чётное число, y=2u. Получаем уравнение на неотрицательные t, u: 2) t(t+1)(2t(t+1)+1)=u2. Числа t, t+1 и 2t(t+1)+1 попарно взаимно просты, а их произведение - полный квадрат. Значит, каждое из них также является полным квадратом. Это возможно только при t=0 (единственная пара последовательных полных квадратов - это 0 и 1). Тогда и u=0. Значит, x=+1, y=0. Ответ:x=1, y=0 или x=-1, y=0.

Найдите все значения параметра а, при каждом из которых все корни уравнения 3ax2(3a3 -12a2-1)x- a(a- 4)= 0 удовлетворяют неравенству x |x|≤1. 1) Пусть 3a = 0, т.е. a = 0, тогда получаем линейное уравнение –x= 0, которое имеет единственный корень x = 0, причем 0ϵ[-1;1]. Значение a = 0 удовлетворяет у
Слайд 18

Найдите все значения параметра а, при каждом из которых все корни уравнения 3ax2(3a3 -12a2-1)x- a(a- 4)= 0 удовлетворяют неравенству x |x|≤1.

1) Пусть 3a = 0, т.е. a = 0, тогда получаем линейное уравнение –x= 0, которое имеет единственный корень x = 0, причем 0ϵ[-1;1]. Значение a = 0 удовлетворяет условию задачи. 2)При a≠0 получаем квадратное уравнение, дискриминант которого равен D=(3a3-12a2-1)2+ 12a2(a- 4)=(3t-1)2-12t=(3t-1)2 , где t= a3- 4a2. а)Тогда найдём корни

x = -(3t-1)-(3t+1) 6a –t a 4a-a2, 1 3a

б)Теперь поставим условия для корней

-1≤4a-a2≤1 -1≤ ≤1 Решим систему Ответ{0} ͜ [2+√3;2+√5]

Существуют ли рациональные числа x, y, u, v, которые удовлетворяют уравнению (x+y√2)6+(u-v√2)6=7+5√2 ? (x+y√2)6=x6+6x5(y√2)+15x4(y√2)2+20x3(y√2)3+15x2(y√2)4+6x(y√2)5+(y√2)6=A+B√2. (u-v√2)6=u6-6u5(v√2)+15u4(v√2)2-20u3(v√2)3+15u2(v√2)4-6u(v√2)5+(v√2)6=A-B√2, то выполняется (x-y√2)6+(u-v√2)6= 7-5√2 Но
Слайд 19

Существуют ли рациональные числа x, y, u, v, которые удовлетворяют уравнению (x+y√2)6+(u-v√2)6=7+5√2 ?

(x+y√2)6=x6+6x5(y√2)+15x4(y√2)2+20x3(y√2)3+15x2(y√2)4+6x(y√2)5+(y√2)6=A+B√2. (u-v√2)6=u6-6u5(v√2)+15u4(v√2)2-20u3(v√2)3+15u2(v√2)4-6u(v√2)5+(v√2)6=A-B√2, то выполняется (x-y√2)6+(u-v√2)6= 7-5√2 Но 7-5√2˂0, а левая часть положительна. Противоречие. Следовательно, исходного равенства быть не может. Ответ: таких чисел нет.

При каких целых n число n2 - 7n + 10 простое? Разложим многочлен x2 - 7x + 10 на множители: x2 - 7x + 10 =(x - 5)(x - 2). Отсюда при любом целом n число n2 - 7n + 10 делится на n - 5 и на n - 2. Оно может быть простым только в том случае, если одно из чисел n - 5 и n - 2 равно 1 или -1, а другое – п
Слайд 20

При каких целых n число n2 - 7n + 10 простое?

Разложим многочлен x2 - 7x + 10 на множители: x2 - 7x + 10 =(x - 5)(x - 2). Отсюда при любом целом n число n2 - 7n + 10 делится на n - 5 и на n - 2. Оно может быть простым только в том случае, если одно из чисел n - 5 и n - 2 равно 1 или -1, а другое – простое: если n - 5 = 1,то n = 6, n - 2 = 4, n2 - 7n + 10 = 4 – составное; если n - 5 = -1, то n = 4, n - 2 = 2, n2 - 7n + 10 = -2 – простое; если n - 2 = 1, то n = 3, n - 5 = -2, n2 - 7n + 10 = -2 – простое; если n - 2 = -1, то n = 1, n - 5 = -4, n2 - 7n + 10 = 4 – составное.

Ответ: при n = 3 и n = 4.

Даны три уравнения с действительными коэффициентами. 1) x2-(a+b)x+8=0; 2) x2-x(b+1)+c=0; 3) x4-b(b+1)x2+c=0.Каждое из них имеет по крайней мере один действительный корень. Корни 1го уравнения больше единицы. Также, корни 1го уравнения являются корнями 3го и хотя бы один корень 1го уравнения удовлетв
Слайд 21

Даны три уравнения с действительными коэффициентами. 1) x2-(a+b)x+8=0; 2) x2-x(b+1)+c=0; 3) x4-b(b+1)x2+c=0.Каждое из них имеет по крайней мере один действительный корень. Корни 1го уравнения больше единицы. Также, корни 1го уравнения являются корнями 3го и хотя бы один корень 1го уравнения удовлетворяет 2ому уравнению. Найти числа a,b,c, если известно, что b>3.

Обозначим корни первого уравнения x1 и x2. Причем пусть за x1 обозначен тот, который является корнем уравнения 2. Заметим, что если x1 является корнем уравнения 3, то и -x1 является корнем уравнения 3. -x1 не может равняться x2, поскольку и x1, и x2 положительны. Значит, у уравнения 3 мы нашли уже 4 корня: x1, -x1, x2 и -x2. У многочлена 4 степени больше корней и не может быть. Заметим, что x1 - корень уравнения 2. А значит, он является квадратом двух из корней уравнения 3. Поэтому x1=x12 либо x1=x22. Из первого уравнения следует, что x1=0 или 1. Но этого быть не может, т.к. x1 больше 1. Значит, x1=x22. Из теоремы Виета для первого уравнения следует, что x1x2=8. Поэтому x23=8. Откуда получаем, что x1=4; x2=2. Отсюда понятно, что a+b=6. Корни уравнения 3 - это ±2 и ±4. Поэтому корни уравнения 2 это 4 и 16. Поэтому с=64; а b(b+1)=20. Получаем b=4 или b=-5 (не подходит, так как b>3). Ответ: a=2;b=4;c=64.

Список похожих презентаций

Башни Кремля. Задачи по математике

Башни Кремля. Задачи по математике

Башни Кремля. Спасская башня считается самой красивой и стройной башней. Построена в 1491 году под руководством архитектора Пьетро Антонио Солари ...
«Задачи по математике»

«Задачи по математике»

Успех каждого – это шаг к успеху всего класса. Реши примеры 5 ·8 5·5 4·6 8·8 25-5 36-6. 48-8 99-9 6·10 50·10 4·10 7·100. =40 =25 =24 =64 =20 =90 =60 ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
«Решение задания С1 ЕГЭ по информатике и ИКТ»

«Решение задания С1 ЕГЭ по информатике и ИКТ»

2 балла. Решение задания С1 ЕГЭ по информатике и ИКТ.  Кунина В.В. область I  область II. 0 x y y = x+2 y2 + x2 = 25 y2 + x2  25 y  0 x  0 область ...
Викторина по математике в 7 классе

Викторина по математике в 7 классе

14 декабря 2012г. Цели викторины: развивать логическое мышление учащихся; закрепить знания полученные на уроках математики; развивать умение быстро ...
Деловая игра "Строитель"" к уроку математики по теме "Площадь многоугольника"

Деловая игра "Строитель"" к уроку математики по теме "Площадь многоугольника"

Цель урока:. усвоение учащимися формул для вычисления площадей параллелограмма, треугольника, трапеции применение полученных знаний к решению практических ...
ГИА по математике

ГИА по математике

Государственная итоговая аттестация (ГИА) по математике является одним из основных экзаменом в девятом классе средней школы в Российской Федерации. ...
Гендерная статистика ЕГЭ по техническим предметам

Гендерная статистика ЕГЭ по техническим предметам

Актуальность: в настоящее время Россия нуждается в кадрах промышленной и строительной областях, в которых трудятся в основном мужчины. Цель: выяснить ...
Вопросы по геометрии

Вопросы по геометрии

2 Кто объясняет происхождение термина «геометрия» так: «Геометрия была открыта египтянами и возникла при измерении Земли. Это измерение было им необходимо ...
Внеклассное мероприятие по математике в 8 классе.

Внеклассное мероприятие по математике в 8 классе.

I. БЛИЦ-ЗНАКОМСТВО. КАЖДОЙ ИЗ КОМАНД БУДЕТ ЗАДАНО ПО 15 ВОПРОСОВ. ЗА КАЖДЫЙ ПРАВИЛЬНЫЙ ОТВЕТ КОМАНДА ПОЛУЧАЕТ 1 БАЛЛ. ВОПРОСЫ ДЛЯ ПЕРВОЙ КОМАНДЫ. ...
Анализ контрольной работы по математике на тему "Натуральные числа и шкалы"

Анализ контрольной работы по математике на тему "Натуральные числа и шкалы"

Натуральные числа и шкалы. 5 к л а с с № 1. Цели деятельности учителя. Главная дидактическая цель : организовать деятельность учащихся, направленную ...
альбом по математике

альбом по математике

Формирование базовых знаний, умений и навыков должно быть связано с творческой деятельностью, с развитием индивидуальных задатков учащихся, их познавательной ...
Авторалли по городам математики

Авторалли по городам математики

Цель: Закрепить навык выполнения действий, возведения чисел в квадрат и куб, закрепить формулы пути и площади. Расширение кругозора учащихся, развитие ...
2 класс Тренажер по математике

2 класс Тренажер по математике

Выбери героя, нажав на него, с кем хочешь проверить свои знания! 7 + 7 18 12 14. 7 + 9 16 15. 7 + 4 11. 7 + 8 17. 7 + 6 13. 10 + 6. 10 + 8 10. 10 ...
«Уравнения по математике»

«Уравнения по математике»

17.10.12. Классная работа. Тема: «Уравнения». Решение уравнений. Математические фокусы. Составление равенств. «Секретная» сказка. «Математику нельзя ...
«Решение задач по математике»

«Решение задач по математике»

10 февраля. В классе. Задача условие вопрос решение ответ. Быстро и правильно считать. Правильно записывать решение задачи. Кричать и сердиться, когда ...
Внеклассное мероприятие по математике

Внеклассное мероприятие по математике

школьная жизнь. Предметная неделя естественно-математического цикла. Срок проведения с 13.02.2012 по 20.02.2012 года. Утром 16 февраля на дверях кабинетов ...
Анализ обучающих программ по математике 1-4 класс

Анализ обучающих программ по математике 1-4 класс

Интерактивная математика для 1-4 классов. Программа фирмы Marco Polo Group. Описание продукта: Интерактивный тренажер по математике для начальной ...
Внеклассное мероприятие по математике "Своя игра

Внеклассное мероприятие по математике "Своя игра

Первый раунд. Разминка. Второй раунд. Шевели извилинами. Финальный раунд. «Математика – царица наук, арифметика – царица математики». Назовите автора ...
Анализ учебников по геометрии

Анализ учебников по геометрии

Хорошо известно, что успехи в обучении школьников во многом зависят от содержания и структуры учебника, по которому они занимаются. По одним учебникам ...

Конспекты

Задачи на движение в противоположных направлениях

Задачи на движение в противоположных направлениях

Конспект урока математики, проведенного в 4«А» классе МБОУ КСОШ № 1 студенткой 4 «К» курса, специальность 050719.52 Коррекционная педагогика в начальном ...
Задачи на смеси, проценты, пропорции

Задачи на смеси, проценты, пропорции

Решение текстовых задач. Решение текстовых задач вызывает наибольшие. затруднения учащихся? Поэтому руководствуюсь следующим:. Чтобы научить ...
Задачи на разные виды движения двух тел в противоположных направлениях

Задачи на разные виды движения двух тел в противоположных направлениях

Технологическая карта урока. Учебный предмет. :. математика. . Класс:. 4 класс. . . Тема. урока. :. «Задачи на разные виды движения двух ...
Задачи на движение. Понятие

Задачи на движение. Понятие

Урок математики в 4 а классе. Тема урока:. Задачи на движение.Понятие ”скорость сближения”. . . Цель:. Продолжить работу по формированию умения ...
Делимость суммы и произведения на данное число. Задачи повышенной трудности

Делимость суммы и произведения на данное число. Задачи повышенной трудности

Методическая разработка открытого урока по математике. . в 6-м классе «Делимость суммы и произведения на данное число. Задачи повышенной трудности». ...
Делимость суммы и произведения на данное число. Задачи повышенной трудности

Делимость суммы и произведения на данное число. Задачи повышенной трудности

Конспект урока по математике. . в 6 классе «Делимость суммы и произведения на данное число. Задачи повышенной трудности». Разработал:. . . ...
Задачи на проценты (с агрокомпонентом)

Задачи на проценты (с агрокомпонентом)

Тема: Задачи на проценты (с агрокомпонентом). Цель урока:. .  . Создание условий для систематизации, обобщения и углубления знаний учащихся при ...
Задачи на умножение

Задачи на умножение

. Кемеровская область. МУ «Управление образования Новокузнецкого района». Муниципальное образовательное учреждение. «Атамановская средняя общеобразовательная ...
Задачи на увеличение и уменьшение данного числа на несколько единиц. Закрепление

Задачи на увеличение и уменьшение данного числа на несколько единиц. Закрепление

Конспект урока математики во 2 классе (специальном коррекционном 8 вида). Тема. :. «Задачи на увеличение и уменьшение данного числа на несколько ...
Задачи на разностное сравнение

Задачи на разностное сравнение

8. . Муниципальное автономное общеобразовательное учреждение «Гимназия №4». Конспект урока математики в 1 классе на тему:. «Задачи на ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:12 марта 2019
Категория:Математика
Содержит:21 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации