- Процентные вычисления в жизненных ситуациях

Презентация "Процентные вычисления в жизненных ситуациях" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23

Презентацию на тему "Процентные вычисления в жизненных ситуациях" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 23 слайд(ов).

Слайды презентации

Процентные вычисления в жизненных ситуациях. Выполнила группа финансистов
Слайд 1

Процентные вычисления в жизненных ситуациях

Выполнила группа финансистов

Цель данной работы: Рассмотреть основные типы задач на проценты Показать широту применения задач «на проценты» Выявить сферы применения данных задач Рассмотреть формулу сложного процента, а также схему расчета сложного процента и их применение при решении задач на проценты
Слайд 2

Цель данной работы: Рассмотреть основные типы задач на проценты Показать широту применения задач «на проценты» Выявить сферы применения данных задач Рассмотреть формулу сложного процента, а также схему расчета сложного процента и их применение при решении задач на проценты

Задачи данной работы: Провести анализ математической и научно-методической литературы по проблеме исследования с целью выделения основных теоретических фактов по теме «Проценты». Выяснить историю происхождения процента, выделить основные типы задач по теме «Проценты». Выяснить сферы использования пр
Слайд 3

Задачи данной работы: Провести анализ математической и научно-методической литературы по проблеме исследования с целью выделения основных теоретических фактов по теме «Проценты». Выяснить историю происхождения процента, выделить основные типы задач по теме «Проценты». Выяснить сферы использования процентов, их роль в жизни человека. Рассмотреть основные типы задач «на проценты» с их последующим решением, выделить формулу для вычисления «сложного процента», а также схему решения задач на «сложные проценты».

История создания процентов. Само слово «процент» происходит от лат. «pro centum», что означает в переводе «сотая доля». В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращенно от
Слайд 4

История создания процентов. Само слово «процент» происходит от лат. «pro centum», что означает в переводе «сотая доля». В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращенно от cento). Однако наборщик принял это «cto» за дробь и напечатал «%». Так из-за опечатки этот знак вошёл в обиход. Были известны проценты и в Индии. Индийские математики вычислили проценты, применяя так называемое тройное правило, то есть пользуясь пропорцией. В Древнем Риме были широко распространены денежные расчеты с процентами. Римский сенат установил максимально доступный процент, взимавшийся с должника.

В Европе в средние века расширилась торговля и, следовательно, особое внимание обращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только проценты, но и проценты с процентов (сложные проценты). Часто конторы и предприятия для облегчения расчетов разрабатывали особые таблицы вы
Слайд 5

В Европе в средние века расширилась торговля и, следовательно, особое внимание обращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только проценты, но и проценты с процентов (сложные проценты). Часто конторы и предприятия для облегчения расчетов разрабатывали особые таблицы вычисления процентов. Эти таблицы держались в тайне, составляли коммерческий секрет фирмы. Впервые таблицы были опубликованы в 1584 году Симоном Стевином. Фламандский ученый, военный инженер Симон Стевин не был по профессии математиком, но его трудолюбие и талант позволили ему занять достойное место среди выдающихся европейских математиков. Он первым в Европе открыл десятичные дроби. Симон Стевин опубликовал таблицу для вычисления сложных процентов, которая использовалась в торгово-финансовых операциях. В практической жизни полезно знать связь между простейшими значениями процентов и соответствующими дробями: половина - 50% , четверть - 25% , три четверти - 75% , пятая часть - 20% , три пятых - 60% и т.д.

Основные теоретические факты: В любой задачи есть условие, т.е. исходные данные, заключение, т.е. требование, которое нужно выполнить и субъект, который это требование выполнит. Задача – это задание, которое должен выполнить субъект, или вопрос, на который он должен найти ответ, опираясь на указанно
Слайд 6

Основные теоретические факты:

В любой задачи есть условие, т.е. исходные данные, заключение, т.е. требование, которое нужно выполнить и субъект, который это требование выполнит. Задача – это задание, которое должен выполнить субъект, или вопрос, на который он должен найти ответ, опираясь на указанное условие и все вытекающие из них следствия.

Основные методы решения текстовых задач: Арифметический - Суть арифметического метода состоит в том, что задачи решаются по действиям. Алгебраический - Суть алгебраического метода решения задач состоит в том, что одна из величин принимается, например за х, все зависимости существующие между величина
Слайд 7

Основные методы решения текстовых задач: Арифметический - Суть арифметического метода состоит в том, что задачи решаются по действиям. Алгебраический - Суть алгебраического метода решения задач состоит в том, что одна из величин принимается, например за х, все зависимости существующие между величинами переводятся на язык равенств, уравнений и далее решается полученное уравнение. Здесь мы предполагаем, что искомая величина найдена и оперируем ей как известной величиной. После нахождения х полученные результаты переводятся с математического языка на естественный.

Основные типы задач на проценты: Нахождение процентов от данного. Нахождение числа по его процентам. Нахождение процентного отношения.
Слайд 8

Основные типы задач на проценты: Нахождение процентов от данного. Нахождение числа по его процентам. Нахождение процентного отношения.

Нахождение процента от числа. Чтобы найти процент от числа, надо это число умножить на соответствующую дробь. Например: 20% от 45кг пшеницы равны 45·0,2=9 кг.
Слайд 9

Нахождение процента от числа

Чтобы найти процент от числа, надо это число умножить на соответствующую дробь.

Например: 20% от 45кг пшеницы равны 45·0,2=9 кг.

Нахождение числа по его проценту. Чтобы найти число по его проценту, надо часть, соответствующую этому проценту разделить на дробь. Например: Если 8% от длины бруска составляют 2,4см, то длина всего бруска равна 2,4:0,08=30см
Слайд 10

Нахождение числа по его проценту

Чтобы найти число по его проценту, надо часть, соответствующую этому проценту разделить на дробь.

Например: Если 8% от длины бруска составляют 2,4см, то длина всего бруска равна 2,4:0,08=30см

Нахождение процентного отношения двух чисел. Чтобы узнать, сколько процентов одно число составляет от второго, надо первое число разделить на второе и результат умножить на 100%. Например. 9г соли в растворе массой 180г составляют 9:180·100%= 5%.
Слайд 11

Нахождение процентного отношения двух чисел

Чтобы узнать, сколько процентов одно число составляет от второго, надо первое число разделить на второе и результат умножить на 100%.

Например. 9г соли в растворе массой 180г составляют 9:180·100%= 5%.

Формула расчета простых процентов. Sp = [P * I * t : K] : 100 I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году(365 или 366) P - сумма привлеченных в депозит денежных средств Sp - сумма процентов (доходов)
Слайд 12

Формула расчета простых процентов

Sp = [P * I * t : K] : 100 I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году(365 или 366) P - сумма привлеченных в депозит денежных средств Sp - сумма процентов (доходов)

Видоизмененная формула простых процентов. S = P + [P * I * t : K] : 100 S - сумма банковского вклада (депозита) с процентами, I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году(365 или 366) P - сумма привлеченных в де
Слайд 13

Видоизмененная формула простых процентов

S = P + [P * I * t : K] : 100 S - сумма банковского вклада (депозита) с процентами, I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году(365 или 366) P - сумма привлеченных в депозит денежных средств

Пример: Предположим что банком принят депозит в сумме 50тыс. рублей сроком на 3 месяца по ставке 10,5 процентов «годовых» Sp = 50 000 * 10,5 * 90 : 365 : 100 = 1294,52 S = 50 000 + 50 000 * 10,5 * 30 : 365 : 100 = 51 294,52

Формула расчета сложных процентов. Sp = P * [(1 + I * t : K :100) n - 1] или Sp = S - P = P * (1 + I * t : K : 100) n – P I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году (365 или 366) P - сумма привлеченных в депоз
Слайд 14

Формула расчета сложных процентов

Sp = P * [(1 + I * t : K :100) n - 1] или Sp = S - P = P * (1 + I * t : K : 100) n – P I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году (365 или 366) P - сумма привлеченных в депозит денежных средств Sp - сумма процентов (доходов). n - число периодов начисления процентов. S - сумма вклада (депозита) с процентами Однако, при расчете процентов проще сначала вычислить общую сумму вклада с процентами, и только затем вычислять сумму процентов (доходов). Формула расчета вклада с процентами будет выглядеть так: S = P * (1 + I * t : K : 100) n

Пример: Принят депозит в сумме 50тыс. Рублей сроком на 90 дней по ставке 10,5 процентов годовых с начислением процентов каждые 30 дней. S = 50 000 * (1 + 10,5 * 30 : 365 :100)3 = =51 305,72 Sp = 50 000 * [(1 + 10,5 * 30 : 365 : 100)3 -1] = =1 305,72
Слайд 15

Пример: Принят депозит в сумме 50тыс. Рублей сроком на 90 дней по ставке 10,5 процентов годовых с начислением процентов каждые 30 дней. S = 50 000 * (1 + 10,5 * 30 : 365 :100)3 = =51 305,72 Sp = 50 000 * [(1 + 10,5 * 30 : 365 : 100)3 -1] = =1 305,72

Исследовательская часть. Сфера применения процентов : в финансовой и экономической (банки), социальной (распределение населения), политической (голосование), коммунальной (повышение и понижение стоимости электроэнергии и квартплаты), в товарных отраслях , в научной (химия, физика – величина КПД)
Слайд 16

Исследовательская часть

Сфера применения процентов : в финансовой и экономической (банки), социальной (распределение населения), политической (голосование), коммунальной (повышение и понижение стоимости электроэнергии и квартплаты), в товарных отраслях , в научной (химия, физика – величина КПД)

Проценты в банковской сфере: Задача 1. Вкладчик положил некоторую сумму на вклад «Новогодний» в Сбербанк России. Через три года вклад достиг 66550 рублей. Каков был первоначальный вклад при 11% годовых? Решение: Используем формулу сложного процента и находим а (1+0,1)3 = 66550 1,331а = 66550 а = 500
Слайд 17

Проценты в банковской сфере:

Задача 1. Вкладчик положил некоторую сумму на вклад «Новогодний» в Сбербанк России. Через три года вклад достиг 66550 рублей. Каков был первоначальный вклад при 11% годовых?

Решение: Используем формулу сложного процента и находим а (1+0,1)3 = 66550 1,331а = 66550 а = 50000 (руб.) – первоначальный вклад Ответ: 50000 рублей первоначальный вклад при 11% годовых.

Задача 2. Цена бананов в магазине «Копейка» первоначально составляла 21р.99коп. С декабря месяца цена сначала поднялась на 15%, потом понизилась на 6,5%, затем снова поднялась на 10%. Какова цена бананов? Решение: По формуле сложного процента находим: 21,99(1+0,15)(1,065)(1+0,1)=26(р) Ответ: 26 рубл
Слайд 18

Задача 2. Цена бананов в магазине «Копейка» первоначально составляла 21р.99коп. С декабря месяца цена сначала поднялась на 15%, потом понизилась на 6,5%, затем снова поднялась на 10%. Какова цена бананов?

Решение: По формуле сложного процента находим: 21,99(1+0,15)(1,065)(1+0,1)=26(р) Ответ: 26 рублей цена бананов.

Проценты в торговле:

Задача 3. На выборах президента РФ в марте приняли участие 68% избирателей Прилузского района. 50% от числа принявших участие в выборах отдали голоса за избранного президента Медведева Д.А. Сколько жителей проголосовало за него, если в городе проживает 75 тыс. взрослого населения? Проценты в политик
Слайд 19

Задача 3. На выборах президента РФ в марте приняли участие 68% избирателей Прилузского района. 50% от числа принявших участие в выборах отдали голоса за избранного президента Медведева Д.А. Сколько жителей проголосовало за него, если в городе проживает 75 тыс. взрослого населения?

Проценты в политике:

Решение: Определим число избирателей, принявших участие в выборах: 75000 · 68100 / 100 = 51000 (чел.) Определим число избирателей, отдавших голос за Медведева Д.А.: 51000 · 50100 / 100 = 25500 (чел.) Ответ: 25500 человек проголосовало за Медведева.

Решение: В 20 т металла содержится 100 – 6 = 94%, или 20 ∙ 0,94= 18,8 (т) чистого металла, который составляет от массы руды 18,8 ∙100 / 40 = 47 %. Ответ: в руде 47 % примесей. Проценты в химии: Задача 4. Из 40 т руды выплавили 20 т металла, содержащего 6% примесей. Сколько процентов примесей в руде?
Слайд 20

Решение: В 20 т металла содержится 100 – 6 = 94%, или 20 ∙ 0,94= 18,8 (т) чистого металла, который составляет от массы руды 18,8 ∙100 / 40 = 47 %. Ответ: в руде 47 % примесей.

Проценты в химии:

Задача 4. Из 40 т руды выплавили 20 т металла, содержащего 6% примесей. Сколько процентов примесей в руде?

Заключение: Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни постоянно. Поэтому выбранная нами тема актуальна. В работе мы обобщили предыдущий опыт, связанный с темой «Проценты», а также рассмотрели более сложные
Слайд 21

Заключение:

Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни постоянно. Поэтому выбранная нами тема актуальна. В работе мы обобщили предыдущий опыт, связанный с темой «Проценты», а также рассмотрели более сложные задачи по данной теме. Также мы узнали, что при решении задач на проценты можно использовать формулу сложного процента, а также схемы.

Решенные нами задачи показали, что применение формулы «сложных процентов» весьма эффективна, поэтому нам бы хотелось, чтобы и остальные учащиеся нашего класса познакомились с ней и увидели ее эффективность, при решении более сложных задач по теме «Проценты».
Слайд 22

Решенные нами задачи показали, что применение формулы «сложных процентов» весьма эффективна, поэтому нам бы хотелось, чтобы и остальные учащиеся нашего класса познакомились с ней и увидели ее эффективность, при решении более сложных задач по теме «Проценты».

Список используемой литературы: Алимов Ш.А., Алгебра: учеб. для 7 кл. общеобразоват. учреждений / Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др. - 10-е изд. – М.: Просвещение, 2002. – 207 с.: ил. Григорьева Т.П., Кузнецова Л.И., Перевощикова Е.Н., Пыжьянова А.Н. Пособие по элементарной математике: ме
Слайд 23

Список используемой литературы:

Алимов Ш.А., Алгебра: учеб. для 7 кл. общеобразоват. учреждений / Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др. - 10-е изд. – М.: Просвещение, 2002. – 207 с.: ил. Григорьева Т.П., Кузнецова Л.И., Перевощикова Е.Н., Пыжьянова А.Н. Пособие по элементарной математике: методы решения задач. Часть 2. 4 – е изд. – Н.Новгород: НГПУ, 2004. - 101 с.

Иванова Т.А., Теоретические основы обучения математике в средней школе: Учебное пособие / Т.А. Иванова, Е.Н. Перевощикова, Т.П. Григорьева, Л.И. Кузнецова; Под ред. проф. Т.А. Ивановой. – Н.Новгород: НГПУ, 2003. – 320 с. Теляковский С.А., Алгебра 7 кл.: Учеб. для общеобразоват. учреждений. – 9-е изд. – М.: Просвещение, 2002. – 375 с.: ил. Шевкин А. В. , Материалы курса «Текстовые задачи в школьном курсе математики»: Лекции 1 – 8. – М.: Педагогический университет «Первое сентября», 2006. 80 с.

Список похожих презентаций

Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Ответьте на вопросы:. Какие системы называются НЕПОЗИЦИОННЫМИ? Какие системы называются ПОЗИЦИОННЫМИ? Какое число называют – ОСНОВАНИЕ позиционной ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

Самостоятельная работа. Вариант I Вариант II. Выполнить действия в двоичной системе счисления:. 1) 101012 + 1012 2) 101012 + 10102 3) 1000012 – 1102 ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
Биография М.В. Ломоносова в цифрах

Биография М.В. Ломоносова в цифрах

=2 =0,3 =3,6 =0,04 =1 =0,8 =0,42 =21,2 М И Ш А Н С К О Е. Ломоносов Родился в с. Мишанинском Архангельской губернии. 8 ноября 1711. Длина = 15,5 м ...
Больше в несколько раз, меньше в несколько раз

Больше в несколько раз, меньше в несколько раз

ЦЕЛЬ УРОКА. раскрытие смысла слов “больше (меньше) в несколько раз”. Расположите числа в порядке возрастания. 18, 9, 45, 27, 36, 72, 54, 63, 9, 18, ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
Алгебра в 9 классе.

Алгебра в 9 классе.

Функция их свойства и графики. Сформулируйте определение чётной функции, определение нечётной функции. Не является ни чётной, ни нечётной. чётная ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах. Цели урока:. Познакомиться с историей возникновения родного города Научиться определять временные промежутки и ...
Алгебраические поверхности в пространстве

Алгебраические поверхности в пространстве

Цели и задачи. Цели: Рассмотреть основные понятия по теме «Алгебраические поверхности второго порядка в пространстве» Задачи: Рассмотреть понятие ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...
Арифметическая и геометрическая прогрессии в заданиях ГИА

Арифметическая и геометрическая прогрессии в заданиях ГИА

Цели урока: Обобщить и систематизировать знания учащихся по данной теме. Разобрать типичные задания встречающихся в сборниках для подготовки к ГИА. ...

Конспекты

Алгебра событий и основные правила вычисления вероятностей

Алгебра событий и основные правила вычисления вероятностей

Закономерности окружающего мира – 7 класс. Тема 9. Алгебра событий и основные правила вычисления вероятностей. урок на тему. Правило сложения ...
Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:23 января 2019
Категория:Математика
Содержит:23 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации