Презентация "Симметрия" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26

Презентацию на тему "Симметрия" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 26 слайд(ов).

Слайды презентации

Симметрия. Работу выполнили: Александрин Илья Веретенников Антон Ханин Андрей Довлекаева Эльвира
Слайд 1

Симметрия

Работу выполнили: Александрин Илья Веретенников Антон Ханин Андрей Довлекаева Эльвира

Содержание. Симметрия в кристаллах Симметрия в архитектуре Симметрия в технике Симметрия в природе Заключение
Слайд 2

Содержание

Симметрия в кристаллах Симметрия в архитектуре Симметрия в технике Симметрия в природе Заключение

Рассмотрим внимательно многогранные формы кристаллов. Прежде всего видно, что кристаллы разных веществ отличаются друг от друга по своим формам. Каменная соль - это всегда кубики; горный хрусталь - всегда шестигранные призмы, иногда с головками в виде трехгранных или шестигранных пирамид; алмаз - ча
Слайд 3

Рассмотрим внимательно многогранные формы кристаллов. Прежде всего видно, что кристаллы разных веществ отличаются друг от друга по своим формам. Каменная соль - это всегда кубики; горный хрусталь - всегда шестигранные призмы, иногда с головками в виде трехгранных или шестигранных пирамид; алмаз - чаще всего правильные восьмигранники (октаэдры); лед - шестигранные призмочки, очень похожие на горный хрусталь, а снежинки - всегда шестилучевые звездочки. Что бросается в глаза, когда смотришь на кристаллы? Прежде всего, их симметрия.

Кристаллы

К понятию о симметрии мы привыкаем с детства. Мы знаем, что симметрична бабочка: у неё одинаковы правое и левое крылышки; симметрично колесо, секторы которого одинаковы; симметричны узоры орнаментов, звёздочки снежинок. Симметричными мы называем тела, которые состоят из равных, одинаковых частей. Эт
Слайд 4

К понятию о симметрии мы привыкаем с детства. Мы знаем, что симметрична бабочка: у неё одинаковы правое и левое крылышки; симметрично колесо, секторы которого одинаковы; симметричны узоры орнаментов, звёздочки снежинок. Симметричными мы называем тела, которые состоят из равных, одинаковых частей. Эти части могут совмещаться друг с другом. Симметрия бывает разной. Какова, например, симметрия бабочки? Бабочка может сложить крылья, и тогда две её одинаковые половинки совмещаются. Это можно описать и иначе. Любое из двух крыльев бабочки как бы отражается в зеркале. Мы говорим, что половинки бабочки зеркально равны или что бабочка обладает плоскостью симметрии.

Всякий знает, что, посмотрев в зеркало, он увидит сам себя. Но вглядитесь внимательно. Вы ли это? Вы протянули, здороваясь, правую руку, но ваш двойник протянет в ответ не ту же руку, а зеркально равную. Поднесите к зеркалу книгу, – и вы увидите, что буквы как бы вывернуты наизнанку. В зеркале всё п
Слайд 5

Всякий знает, что, посмотрев в зеркало, он увидит сам себя. Но вглядитесь внимательно. Вы ли это? Вы протянули, здороваясь, правую руку, но ваш двойник протянет в ответ не ту же руку, а зеркально равную. Поднесите к зеркалу книгу, – и вы увидите, что буквы как бы вывернуты наизнанку. В зеркале всё переставлено справа налево. Ваши руки, правая и левая, одинаковы, правда? Однако они совпадут друг с другом, если отразить их в зеркале, но не совпадут, если положить одну руку на другую. Правая и левая руки зеркально равны, их можно совместить друг с другом только путём отражения в плоскости симметрии, как в зеркале.

Плоскости симметрии можно обнаружить и в кристаллах. В снежинке, например, можно найти даже не одну плоскость симметрии, а шесть. Представьте себе, что снежинка отражается в любом из зеркал, следы которых показаны пунктирными линиями (зеркала поставленыперпендикулярно к плоскости чертежа). Ясно, что
Слайд 6

Плоскости симметрии можно обнаружить и в кристаллах. В снежинке, например, можно найти даже не одну плоскость симметрии, а шесть. Представьте себе, что снежинка отражается в любом из зеркал, следы которых показаны пунктирными линиями (зеркала поставленыперпендикулярно к плоскости чертежа). Ясно, что, отразив в зеркале любую половину снежинки, мы получим всё ту же шестилучевую звёздочку

Свойство кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов либо части или комбинации этих операций. Симметрия внешней формы (огранки) кристалла определяется симметрией его атомного строения, которая обусловливает также и симметрию физических сво
Слайд 7

Свойство кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов либо части или комбинации этих операций. Симметрия внешней формы (огранки) кристалла определяется симметрией его атомного строения, которая обусловливает также и симметрию физических свойств кристалла.

В наиболее общей формулировке симметрия — неизменность (инвариантность) объектов при некоторых преобразованиях описывающих их переменных. Кристаллы — объекты в трёхмерном пространстве, поэтому классическая теория С. К. — теория симметрических преобразований в себя трёхмерного пространства с учётом т
Слайд 8

В наиболее общей формулировке симметрия — неизменность (инвариантность) объектов при некоторых преобразованиях описывающих их переменных. Кристаллы — объекты в трёхмерном пространстве, поэтому классическая теория С. К. — теория симметрических преобразований в себя трёхмерного пространства с учётом того, что внутренняя атомная структура кристаллов — трёхмерно-периодическая, т. е. описывается как кристаллическая решетка. При преобразованиях симметрии пространство не деформируется, а преобразуется как жёсткое целое (ортогональное, или изометрическое, преобразование). После преобразования симметрии части объекта, находившиеся в одном месте, совпадают с частями, находящимися в др. месте. Это означает, что в симметричном объекте есть равные части (совместимые или зеркальные).

Точечная симметрия кристаллов. Точечное преобразование в теории симметрии – это преобразование, которое оставляет в покое, т. е. неподвижной, хотя бы одну точку фигуры. Если при некотором точечном преобразовании фигура переходит сама в себя, то говорят, что она симметрична относительно этого преобра
Слайд 9

Точечная симметрия кристаллов

Точечное преобразование в теории симметрии – это преобразование, которое оставляет в покое, т. е. неподвижной, хотя бы одну точку фигуры. Если при некотором точечном преобразовании фигура переходит сама в себя, то говорят, что она симметрична относительно этого преобразования (обладает соответствующим элементом симметрии: осью, плоскостью отражения и т. д.)

Примеры групп симметрии. Группа равностороннего треугольника. Группа куба Группа тетраэдра
Слайд 10

Примеры групп симметрии

Группа равностороннего треугольника

Группа куба Группа тетраэдра

Все это привело человека к мысли, что чтобы сооружение было красивым оно должно быть симметричным. Симметрия использовалась при сооружении культовых и бытовых сооружений в Древнем Египте. Украшения этих сооружений тоже представляют образцы использования симметрии. Но наиболее ярко симметрия проявляе
Слайд 11

Все это привело человека к мысли, что чтобы сооружение было красивым оно должно быть симметричным. Симметрия использовалась при сооружении культовых и бытовых сооружений в Древнем Египте. Украшения этих сооружений тоже представляют образцы использования симметрии. Но наиболее ярко симметрия проявляется в античных сооружениях Древней Греции, предметах роскоши и орнаментов, украшавших их.

Симметрия в архитектуре

Симметрия в технике
Слайд 12

Симметрия в технике

«Природа! Из простейшего вещества творит она противоположнейшие произведения, без малейшего усилия, с величайшим совершенством, и на все кладет какое-то нежное покрывало. У каждого ее создания особенная сущность, у каждого явления отдельное понятие, а все едино» Гёте. Симметрия в живой природе.
Слайд 13

«Природа! Из простейшего вещества творит она противоположнейшие произведения, без малейшего усилия, с величайшим совершенством, и на все кладет какое-то нежное покрывало. У каждого ее создания особенная сущность, у каждого явления отдельное понятие, а все едино» Гёте.

Симметрия в живой природе.

ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой. ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ. О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние а либо расстояние, кратное этой величине, она совмещается с
Слайд 14

ПОВОРОТНАЯ СИММЕТРИЯ. Говорят, что объект обладает поворотной симметрией, если он совмещается сам с собой. ПЕРЕНОСНАЯ (ТРАНСЛЯЦИОННАЯ) СИММЕТРИЯ. О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние а либо расстояние, кратное этой величине, она совмещается сама с собой. ЗЕРКАЛЬНАЯ СИММЕТРИЯ. Зеркально симметричным считается объект, состоящий из двух половин, которые являются зеркальными двойниками по отношению друг к другу. СИММЕТРИИ ПОДОБИЯ представляют собой своеобразные аналоги предыдущих симметрий с той лишь разницей, что они связаны с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрешки. КАЛИБРОВОЧНЫЕ СИММЕТРИИ связаны с изменением масштаба.

Виды симметрии.

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить. В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий.
Слайд 15

Симметрией обладают объекты и явления живой природы. Она не только радует глаз и вдохновляет поэтов всех времен и народов, а позволяет живым организмам лучше приспособиться к среде обитания и просто выжить. В живой природе огромное большинство живых организмов обнаруживает различные виды симметрий. Внешняя симметрия может выступить в качестве основания классификации организмов (сферическая, радиальная, осевая и т.д.) Микроорганизмы, живущие в условиях слабого воздействия гравитации, имеют ярко выраженную симметрию формы. В настоящее время хорошо известно, что молекулы органических веществ, составляющие основу живой материи, имеют асимметричный характер, т.е. в состав живого вещества они входят только либо как правые, либо как левые молекулы. Таким образом, каждое вещество может входить в состав живой материи только в том случае, если оно обладает вполне определенным типом симметрии. Например, молекулы всех аминокислот в любом живом организме могут быть только левыми, сахара - только правыми. Это свойство живого вещества и его продуктов жизнедеятельности называют дисимметрией.

СИММЕТРИЯ В ЖИВОЙ ПРИРОДЕ. СИММЕТРИЯ И АСИММЕТРИЯ.

Асимметрия присутствует уже на уровне элементарных частиц и проявляется в абсолютном преобладании в нашей Вселенной частиц над античастицами. Известный физик Ф. Дайсон писал: "Открытия последних десятилетий в области физики элементарных частиц заставляют нас обратить внимание на концепцию наруш
Слайд 16

Асимметрия присутствует уже на уровне элементарных частиц и проявляется в абсолютном преобладании в нашей Вселенной частиц над античастицами. Известный физик Ф. Дайсон писал: "Открытия последних десятилетий в области физики элементарных частиц заставляют нас обратить внимание на концепцию нарушения симметрии. Развитие Вселенной с момента ее зарождения выглядит как непрерывная последовательность нарушений симметрии. В момент своего возникновения при грандиозном взрыве Вселенная была симметрична и однородна. По мере остывания в ней нарушается одна симметрия за другой, что создает возможности для существования все большего и большего разнообразия структур. Молекулярная асимметрия открыта Л. Пастером, который первым выделил "правые" и "левые" молекулы винной кислоты: правые молекулы похожи на правый винт, а левые - на левый. Такие молекулы химики называют стереоизомерами. Молекулы-стереоизомеры имеют одинаковый атомный состав, одинаковые размеры, одинаковую структуру - в то же время они различимы, поскольку являются зеркально асимметричными.

Если бы живое существо оказалось в условиях, когда вся пища была бы составлена из молекул противоположной симметрии, не отвечающей дисимметрии этого организма, то оно погибло бы от голода. В неживом веществе правых и левых молекул поровну. Дисимметрия - единственное свойство, благодаря которому мы м
Слайд 18

Если бы живое существо оказалось в условиях, когда вся пища была бы составлена из молекул противоположной симметрии, не отвечающей дисимметрии этого организма, то оно погибло бы от голода. В неживом веществе правых и левых молекул поровну. Дисимметрия - единственное свойство, благодаря которому мы можем отличить вещество биогенного происхождения от неживого вещества. Таким образом, асимметрию можно рассматривать как разграничительную линию между живой и неживой природой. . Симметрия лежит в основе вещей и явлений, выражая нечто общее, свойственное разным объектам, тогда как асимметрия связана с индивидуальным воплощением этого общего в конкретном объекте. На принципе симметрии основан метод аналогий, предполагающий отыскание общих свойств в различных объектах. На основе аналогий создаются физические модели различных объектов и явлений. Аналогии между процессами позволяют описывать их общими уравнениями.

Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а т
Слайд 19

Специфика строения растений и животных определяется особенностями среды обитания, к которой они приспосабливаются, особенностями их образа жизни. У любого дерева есть основание и вершина, "верх" и "низ", выполняющие разные функции. Значимость различия верхней и нижней частей, а также направление силы тяжести определяют вертикальную ориентацию поворотной оси "древесного конуса" и плоскостей симметрии. Для листьев характерна зеркальная симметрия. Эта же симметрия встречается и у цветов, однако у них зеркальная симметрия чаще выступает в сочетании с поворотной симметрией. Нередки случаи и переносной симметрии (веточки акации, рябины). Интересно, что в цветочном мире наиболее распространена поворотная симметрия 5-го порядка, которая принципиально невозможна в периодических структурах неживой природы. Этот факт академик Н. Белов объясняет тем, что ось 5-го порядка - своеобразный инструмент борьбы за существование, "страховка против окаменения, кристаллизации, первым шагом которой была бы их поимка решеткой" Действительно, живой организм не имеет кристаллического строения в том смысле, что даже отдельные его органы не обладают пространственной решеткой. Однако упорядоченные структуры в ней представлены очень широко. Соты- настоящий конструкторский шедевр. Они состоят из ряда шестигранных ячеек. Это самая плотная упаковка, позволяющая наивыгоднейшим образом разместить в ячейке личинку и при максимально возможном объеме наиболее экономно использовать строительный материал-воск.

СИММЕТРИЯ В МИРЕ РАСТЕНИЙ:

Типы симметрии у животных центральная осевая радиальная билатеральная двулучевая поступательная (метамерия) поступательно-вращательная. СИММЕТРИЯ В МИРЕ НАСЕКОМЫХ, РЫБ, ПТИЦ, ЖИВОТНЫХ
Слайд 20

Типы симметрии у животных центральная осевая радиальная билатеральная двулучевая поступательная (метамерия) поступательно-вращательная

СИММЕТРИЯ В МИРЕ НАСЕКОМЫХ, РЫБ, ПТИЦ, ЖИВОТНЫХ

Ось симметрии- это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом
Слайд 21

Ось симметрии- это ось вращения. В этом случае у животных, как правило, отсутствует центр симметрии. Тогда вращение может происходить только вокруг оси. При этом ось чаще всего имеет разнокачественные полюса. Например, у кишечнополостных, гидры или актинии, на одном полюсе расположен рот, на другом - подошва, которой эти неподвижные животные прикреплены к субстрату. Ось симметрии может совпадать морфологически с переднезадней осью тела.

Ось симметрии.

Вращательная симметрия. Любой организм обладает вращательной симметрией Для вращательной симметрии существенным характерным элементом являются антимеры. Важно знать, при повороте на какой градус контуры тела совпадут с исходным положением. Максимальный градус поворота 360 , когда при повороте на эту
Слайд 22

Вращательная симметрия. Любой организм обладает вращательной симметрией Для вращательной симметрии существенным характерным элементом являются антимеры. Важно знать, при повороте на какой градус контуры тела совпадут с исходным положением. Максимальный градус поворота 360 , когда при повороте на эту величину контуры тела совпадут.

Типы симметрии. Известны всего два основных типа симметрии – вращательная и поступательная. Кроме того, встречается модификация из совмещения этих двух основных типов симметрии – вращательно-поступательная симметрия.

Если тело вращается вокруг центра симметрии, то через центр симметрии можно провести множество осей и плоскостей симметрии. Если тело вращается вокруг одной гетерополярной оси, то через эту ось можно провести столько плоскостей, сколько антимер имеет данное тело. В зависимости от этого условия говор
Слайд 23

Если тело вращается вокруг центра симметрии, то через центр симметрии можно провести множество осей и плоскостей симметрии. Если тело вращается вокруг одной гетерополярной оси, то через эту ось можно провести столько плоскостей, сколько антимер имеет данное тело. В зависимости от этого условия говорят о вращательной симметрии определённого порядка. Например, у шестилучевых кораллов будет вращательная симметрия шестого порядка. У гребневиков две плоскости симметрии, и они имеют симметрию второго порядка.

Вращательно-поступательная симметрия. Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определённый угол часть тела немного проступает вперед и её размеры каждый следующий логарифмически увеличивает на определённую величину. Так
Слайд 24

Вращательно-поступательная симметрия. Этот тип симметрии имеет ограниченное распространение в животном мире. Эта симметрия характерна тем, что при повороте на определённый угол часть тела немного проступает вперед и её размеры каждый следующий логарифмически увеличивает на определённую величину. Таким образом, происходит совмещение актов вращения и поступательного движения. Примером могут служить спиральные камерные раковины фораминифер, а также спиральные камерные раковины некоторых головоногих моллюсков ( современный наутилус или ископаемые раковины аммонитов). С некоторым условием к этой группе можно отнести также и некамерные спиральные раковины брюхоногих моллюсков.

Винтовая симметрия есть симметрия относительно комбинации двух преобразований - поворота и переноса вдоль оси поворота, т.е. идёт перемещение вдоль оси винта и вокруг оси винта. Встречаются левые и правые винты . Примерами природных винтов являются: бивень нарвала (небольшого китообразного, обитающе
Слайд 25

Винтовая симметрия есть симметрия относительно комбинации двух преобразований - поворота и переноса вдоль оси поворота, т.е. идёт перемещение вдоль оси винта и вокруг оси винта. Встречаются левые и правые винты . Примерами природных винтов являются: бивень нарвала (небольшого китообразного, обитающего в северных морях) – левый винт;раковина улитка– правый винт; рога памирского барана – энантиоморфы (один рог закручен по левой, а другой по правой спирали). Спиральная симметрия не бывает идеальной, например, раковина у моллюсков сужается или расширяется на конце.

Винтовая или спиральная симметрия.

С симметрией мы встречаемся везде – в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке.
Слайд 26

С симметрией мы встречаемся везде – в природе, технике, искусстве, науке. Понятие симметрии проходит через всю многовековую историю человеческого творчества. Принципы симметрии играют важную роль в физике и математике, химии и биологии, технике и архитектуре, живописи и скульптуре, поэзии и музыке. Законы природы, управляющие неисчерпаемой в своём многообразии картиной явлений, в свою очередь, подчиняются принципам симметрии. Существует множество видов симметрии как в растительном, так и в животном мире, но при всем многообразии живых организмов, принцип симметрии действует всегда, и этот факт еще раз подчеркивает гармоничность нашего мира.

ЗАКЛЮЧЕНИЕ:

Список похожих презентаций

Симметрия правит миром

Симметрия правит миром

Цели:. Образовательная: создание условий для введения понятия симметрии, ее применения на уроках алгебры, геометрии, русского языка, биологии, архитектуры ...
Симметрия и симметричные фигуры

Симметрия и симметричные фигуры

“Симметрия является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство”. Г. Вейль. ...
Симметрия на столе

Симметрия на столе

Цель: Доказать, что с предметами, имеющими ось или центр симметрии мы встречаемся ежедневно. Гипотеза: Симметрия – это красота. Наши наблюдения:. ...
Симметрия вокруг нас

Симметрия вокруг нас

Цели исследования:. Выяснить симметрия это – гармония и красота? равновесие? устойчивость? Рассмотреть, как симметрия используется в окружающем мире? ...
Симметрия и движение

Симметрия и движение

Симметрия и движение. Какой многоугольник называется правильным? Приведите примеры правильных  многоугольников. Как найти сумму углов правильного ...
Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильного многогранника

Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильного многогранника

Цель урока: Ознакомление с понятием симметрии в пространстве и с понятием правильного многогранника. Задачи урока: Ввести понятие правильного многогранника, ...
Симметрия вокруг нас

Симметрия вокруг нас

Предварительное домашнее задание. Познакомиться с теоретическим материалом по теме «Осевая и центральная симметрии» Ответить на вопросы к данному ...
Симметрия

Симметрия

Прошли тысячелетия, прежде чем человечество в ходе своей общественно-производственной деятельности осознало необходимость выразить в определенных ...
Симметрия

Симметрия

Симметрия - (от греч. Symmetria - соразмерность) в математике, соразмерность, одинаковость расположений частей чего-нибудь по противоположные стороны ...
Симметрия

Симметрия

Симметрия может быть 9 видов:. Зеркальная Вращательная Скользящая Точечная Винтовая Фрактальная Неизометричная. А также Осевая и Центральная. О: Это ...
Симметрия

Симметрия

Историческая справка. Какие ассоциации у вас возникают, когда вы слышите слово «Америка»?.. Наверняка, из всего, что придет на ум, обязательно первые ...
Симметрия

Симметрия

УЧАСТНИК ПРОЕКТА. УЧЕНИЦА 8 «А» МОУ СОШ № 12 г. БАЛАШОВА АРТЁМОВА ЮЛИЯ. РУКОВОДИТЕЛЬ ПРОЕКТА. УЧИТЕЛЬ МАТЕМАТИКИ МОУ СОШ № 12 Г. БАЛАШОВА ЮРКО ОЛЕСЯ ...
Симметрия

Симметрия

Постройте на прямой l точку К, чтобы сумма расстояний от M и N до K была наименьшей, если: M и N лежат по разные стороны от l. M и N лежат по одну ...
Симметрия

Симметрия

Симметрия… является той идеей, посредством которой человек на протяжении веков пытался постичь и создать порядок, красоту и совершенство. Г. Вейль. ...
Симметрия в природе. Геометрия природных форм

Симметрия в природе. Геометрия природных форм

Симметрия в природе. Геометрия природных форм. Развитие учения о симметрии. Всеобъемлющий закон природы. Принцип симметрии Пьера Кюри(1859-1906). ...
Симметрия

Симметрия

«Симметрия, как бы широко или узко мы ни понимали это слово, есть идея, с помощью которой человек пытался объяснить и создать порядок, красоту и совершенство". ...
Симметрия в пространстве

Симметрия в пространстве

Мы живем в очень красивом и гармоничном мире. Нас окружают предметы, которые радуют глаз. Например, бабочка, кленовый лист, снежинка. Посмотрите, ...
Симметрия

Симметрия

СИММЕТРИЯ, в геометрии — свойство геометрических фигур. Две точки, лежащие на одном перпендикуляре к данной плоскости (или прямой) по разные стороны ...
Симметрия в русском орнаменте

Симметрия в русском орнаменте

СИММЕТРИЯ в русском орнаменте. "Человек по природе своей - художник. Он всюду, так или иначе, стремится вносить в свою жизнь красоту. Красивые вещи ...
Симметрия - соразмерность

Симметрия - соразмерность

Гипотеза: Симметрия -это соразмерность. Цель работы: Проанализировать, что симметрия это соразмерность, что она лежит в основе законов. 1. Когда фигура ...

Конспекты

Симметрия в пространстве

Симметрия в пространстве

МЕТОДИЧЕСКАЯ РАЗРАБОТКА УРОКА ПО МАТЕМАТИКЕ. . ДЛЯ 6 КЛАССА. НА ТЕМУ «Симметрия в пространстве». Выполнила учитель математики. . МОУ Борисоглебская ...
Симметрия

Симметрия

Урок на тему:. «Симметрия». (. Факультативное занятие в 4 классе. ). Цели:. 1.Образовательные:. углубить знания о симметрии, сформировать понятие ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 января 2019
Категория:Математика
Содержит:26 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации