Презентация "Пи 2" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27
Слайд 28
Слайд 29
Слайд 30
Слайд 31

Презентацию на тему "Пи 2" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 31 слайд(ов).

Слайды презентации

Научная сессия-конференция секции ЯФ ОФН РАН “Физика фундаментальных взаимодействий” (26-30 ноября 2007 г.). Пи-Теория фундаментальных физических констант 30 ноября 2007 г. В.Б. Смоленский
Слайд 1

Научная сессия-конференция секции ЯФ ОФН РАН “Физика фундаментальных взаимодействий” (26-30 ноября 2007 г.)

Пи-Теория фундаментальных физических констант 30 ноября 2007 г. В.Б. Смоленский

Пи-Теория фундаментальных физических констант исходит из следующих предположений: 1. Физическая реальность существует как компромисс между полным наличием и полным отсутствием самой себя. 2. Для определения пространственно - временных параметров физической реальности достаточно системы единиц LT и ч
Слайд 2

Пи-Теория фундаментальных физических констант исходит из следующих предположений: 1. Физическая реальность существует как компромисс между полным наличием и полным отсутствием самой себя. 2. Для определения пространственно - временных параметров физической реальности достаточно системы единиц LT и числа пи. 3. Физическая масса M есть площадь эквивалентная данной физической массе. 4. Физическая реальность, формируя метрический интервал должна полностью скомпенсировать эквивалентным ему псевдометрическим интервалом . С и Т - скорость и время компенсации. 5. Скорость распространения взаимодействий конечна. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Компенсационный принцип (далее К-принцип), запишем как: где n – размерность пространства. К-принцип, в общем случае, можно записать как: или: и - значения размерного или безразмерного параметра физической реальности, находящиеся в пределах: N - целое число, находящееся в пределах © В.Б. Смоленский 2
Слайд 3

Компенсационный принцип (далее К-принцип), запишем как: где n – размерность пространства. К-принцип, в общем случае, можно записать как: или: и - значения размерного или безразмерного параметра физической реальности, находящиеся в пределах: N - целое число, находящееся в пределах © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

6.Физическая реальность существует только в границах своих параметров L и T: - предельные значения параметров L и T физической реальности. 7. Безразмерные фундаментальные физические постоянные не изменяются со временем. 8. Справедлив принцип причинности. 9. Выполняется принцип эквивалентности. Запиш
Слайд 4

6.Физическая реальность существует только в границах своих параметров L и T: - предельные значения параметров L и T физической реальности. 7. Безразмерные фундаментальные физические постоянные не изменяются со временем. 8. Справедлив принцип причинности. 9. Выполняется принцип эквивалентности. Запишем в системе единиц LT широко известные планковские параметры физической реальности: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

- гравитационная постоянная Ньютона; - постоянная Планка - “планковская” плотность - “планковский” объем © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 5

- гравитационная постоянная Ньютона; - постоянная Планка - “планковская” плотность - “планковский” объем © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Определим постоянную Представим в виде: где  - некоторая безразмерная постоянная, тогда: где и – соответственно масса и комптоновская длина волны электрона. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 6

Определим постоянную Представим в виде: где  - некоторая безразмерная постоянная, тогда: где и – соответственно масса и комптоновская длина волны электрона. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

В виду того, что: Уравнение взаимосвязи фундаментальных физических констант запишется как: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 7

В виду того, что: Уравнение взаимосвязи фундаментальных физических констант запишется как: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Уравнение взаимосвязи фундаментальных физических констант. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 8

Уравнение взаимосвязи фундаментальных физических констант

© В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Уравнение для расчета элементарного объема Из последнего уравнения следует, что электрон должен иметь массу покоя, т.к. при любом изменении элементарный объем не будет постоянным. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 9

Уравнение для расчета элементарного объема Из последнего уравнения следует, что электрон должен иметь массу покоя, т.к. при любом изменении элементарный объем не будет постоянным. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Уравнение для
Слайд 10

Уравнение для

Уравнение для расчета гравитационной постоянной
Слайд 11

Уравнение для расчета гравитационной постоянной

Фазовый радиус вселенной
Слайд 12

Фазовый радиус вселенной

Фазовый и метрический объемы тела. NT – число частиц составляющих тело.
Слайд 13

Фазовый и метрический объемы тела

NT – число частиц составляющих тело.

Всегда должны выполняться соотношения: - ускорение тела © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 14

Всегда должны выполняться соотношения: - ускорение тела © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

уравнение взаимосвязи фундаментальных физических констант
Слайд 15

уравнение взаимосвязи фундаментальных физических констант

применение К-принципа (частный случай)
Слайд 16

применение К-принципа (частный случай)

Земля
Слайд 17

Земля

Определим абсолютную пустоту как некую параметрическую абстракцию - среду, которой нет и в которой ничего нет. Тогда, условно говоря, в такой среде нельзя создать или определить даже одну точку, ведь среды нет. Определим абсолютную полноту как сплошную среду, которая есть и в которой все есть. Тогда
Слайд 18

Определим абсолютную пустоту как некую параметрическую абстракцию - среду, которой нет и в которой ничего нет. Тогда, условно говоря, в такой среде нельзя создать или определить даже одну точку, ведь среды нет. Определим абсолютную полноту как сплошную среду, которая есть и в которой все есть. Тогда мы не сможем уничтожить или определить точку в этой сплошной среде, потому что точки среды должны отличаться друг от друга, а отличий нет. Даже нет понятия точки, потому что среда сплошная. Если мы не можем определить точку в среде, то значит, мы не можем судить о среде, т.е. чем является среда: абсолютной пустотой или абсолютной полнотой. Каким образом такие сущности как абсолютные пустота и полнота могут проявить себя? Предположим, что Природа не может реализовываться или существовать в виде только абсолютной пустоты или только абсолютной полноты. Тогда, если это так, Природа делает выбор, если реализует только один из вариантов: или абсолютная пустота или абсолютная полнота. Представляется верным предположить, что должен быть компромисс в виде реализации компенсационного принципа, т.е. Природа существует одновременно как абсолютная пустота и как абсолютная полнота, которые каким-то образом скомпенсированы. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Добавление хотя бы одного элемента к абсолютной пустоте делает ее не абсолютной пустотой. Уменьшение абсолютной полноты хотя бы на один элемент делает ее не абсолютной полнотой. Как Природа может изменить (уменьшить) абсолютную полноту и изменить (увеличить) абсолютную пустоту? Природа подчиняется с
Слайд 19

Добавление хотя бы одного элемента к абсолютной пустоте делает ее не абсолютной пустотой. Уменьшение абсолютной полноты хотя бы на один элемент делает ее не абсолютной полнотой. Как Природа может изменить (уменьшить) абсолютную полноту и изменить (увеличить) абсолютную пустоту? Природа подчиняется следующему компенсационному уравнению: тогда: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Пусть выполняется соотношение: Пусть появился только один 0-мерный объем, т.е. выполняется условие: Тогда: Причем появился именно 0-мерный объем, а не его ордината, т.к. в силу соотношения: ордината объема нулевой размерности не определяется. вместе с должен появиться 0-мерный объем : © В.Б. Смоленс
Слайд 20

Пусть выполняется соотношение: Пусть появился только один 0-мерный объем, т.е. выполняется условие: Тогда: Причем появился именно 0-мерный объем, а не его ордината, т.к. в силу соотношения: ордината объема нулевой размерности не определяется. вместе с должен появиться 0-мерный объем : © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

или Получается, что одновременно должны существовать объемы и , причем: Тогда можно записать: Мы имеем своеобразный принцип неопределенности: неизвестно, содержит ли единичный 0-мерный объем только один 0-мерный объем или содержит 0-мерных объемов. © В.Б. Смоленский 2007 Пи-Теория фундаментальных фи
Слайд 21

или Получается, что одновременно должны существовать объемы и , причем: Тогда можно записать: Мы имеем своеобразный принцип неопределенности: неизвестно, содержит ли единичный 0-мерный объем только один 0-мерный объем или содержит 0-мерных объемов. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Тогда можно записать: Исходя из того, что: Используя соотношение для К-принципа: запишем: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 22

Тогда можно записать: Исходя из того, что: Используя соотношение для К-принципа: запишем: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

или: Тогда можно записать: в общем случае: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 23

или: Тогда можно записать: в общем случае: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

для объемов с размерностью больше нуля выполняется соотношение: Последняя система уравнений представляет собой ни что иное как математическую интерпретацию принципа причинности. Природа не может создать вначале объемы с размерностью больше нуля, т.е. метрические объемы, а потом уже нульмерные объемы
Слайд 24

для объемов с размерностью больше нуля выполняется соотношение: Последняя система уравнений представляет собой ни что иное как математическую интерпретацию принципа причинности. Природа не может создать вначале объемы с размерностью больше нуля, т.е. метрические объемы, а потом уже нульмерные объемы. Это логически некорректно. Более того, возникает сразу вопрос, а какое количество минимальных метрических объемов нужно создать. Природа, вообще говоря, должна создать, как минимум, хотя бы один физический объект находящийся в двух разных состояниях, например, объект имеющий одновременно минимальный и максимальный метрический объем. Это невозможно, в виду конечной скорости распространения взаимодействий и, если иметь в виду реальный максимальный метрический объем. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Природа создать эти метрические объемы не может, т.к., по условию, физический объект одновременно не может находиться в двух разных состояниях, т.е., в нашем случае, иметь два разных трехмерных метрических объема. И, тем не менее, Природа находит выход из положения. Природа создает один минимальный
Слайд 25

Природа создать эти метрические объемы не может, т.к., по условию, физический объект одновременно не может находиться в двух разных состояниях, т.е., в нашем случае, иметь два разных трехмерных метрических объема. И, тем не менее, Природа находит выход из положения. Природа создает один минимальный метрический объем, равный: или: Обозначим: Тогда: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Запишем для 4-х мерного случая систему уравнений: Из системы уравнений следует, что: Или, в более общем случае: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 26

Запишем для 4-х мерного случая систему уравнений: Из системы уравнений следует, что: Или, в более общем случае: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Из последнего уравнения мы получаем ответ на вопрос почему пространство трехмерно. Потому что, при , объем запишется как . Представляется верным интерпретировать это обстоятельство как запрет Природы на существование объемов отрицательной размерности и, очевидно, как следствие, запрет на существован
Слайд 27

Из последнего уравнения мы получаем ответ на вопрос почему пространство трехмерно. Потому что, при , объем запишется как . Представляется верным интерпретировать это обстоятельство как запрет Природы на существование объемов отрицательной размерности и, очевидно, как следствие, запрет на существование отрицательных объемов. Запишем следующие выражения, проясняющие сложившуюся ситуацию. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Выражение: можно записать в виде: и в виде: Записанные уравнения тождественны абсолютно, поэтому Природа должна реализовать оба варианта. Но мы до этого выяснили, что невозможно одному физическому объекту одновременно находиться в двух различных состояниях, поэтому Природа одномоментно создает: 1.Ме
Слайд 28

Выражение: можно записать в виде: и в виде: Записанные уравнения тождественны абсолютно, поэтому Природа должна реализовать оба варианта. Но мы до этого выяснили, что невозможно одному физическому объекту одновременно находиться в двух различных состояниях, поэтому Природа одномоментно создает: 1.Метрические объемы: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

2. Фазовые объемы: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант
Слайд 29

2. Фазовые объемы: © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Следует иметь в виду, что есть реальный метрический объем, а - псевдореальный объем, который равен максимальному значению реального метрического объема нашей вселенной. Таким образом, вселенная должна расширяться от реального объема до реального объема равного . Возможен и обратный процесс. В любом
Слайд 30

Следует иметь в виду, что есть реальный метрический объем, а - псевдореальный объем, который равен максимальному значению реального метрического объема нашей вселенной. Таким образом, вселенная должна расширяться от реального объема до реального объема равного . Возможен и обратный процесс. В любом случае, на переходный процесс из одного состояния в другое, проходящий с конечной скоростью требуется время. В этом и состоит природа времени. Стрела времени имеет только одно направление. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Какие экспериментальные факты могли бы опровергнуть Теорию. 1. Нарушение принципа причинности. 2. Нарушение принципа эквивалентности. 3. Переменность со временем фундаментальных безразмерных констант. 4. Бесконечная скорость распространения взаимодействий. 5. Нестабильность протона. © В.Б. Смоленски
Слайд 31

Какие экспериментальные факты могли бы опровергнуть Теорию

1. Нарушение принципа причинности. 2. Нарушение принципа эквивалентности. 3. Переменность со временем фундаментальных безразмерных констант. 4. Бесконечная скорость распространения взаимодействий. 5. Нестабильность протона. © В.Б. Смоленский 2007 Пи-Теория фундаментальных физических констант

Список похожих презентаций

История числа Пи

История числа Пи

Впервые обозначением этого числа греческой буквой воспользовался британский математик Уильям Джонс в 1706 году, а общепринятым оно стало после работ ...
Интересные факты о числе Пи

Интересные факты о числе Пи

«Лицо π было скрыто маской. Все понимали, что сорвать её, не сможет никто…» Бертран Рассел. Хронология вычисления числа ПИ. Практические способы вычисления ...
Загадочное число Пи

Загадочное число Пи

Пи, несомненно, одна из наиболее универсальных и фундаментальных констант, известных Человечеству. В силу своей универсальности Пи используется в ...
Вычисления значения числа Пи

Вычисления значения числа Пи

Число π – это хаос. Периферия – окружность. Известно много формул с числом π:. Франсуа Виет: Формула Валлиса:. Выражение через полилогарифм:. И многие ...
Алгебра и геометрия

Алгебра и геометрия

Комплексные числа. ׳. Содержание. § 1. Основные понятия § 2. Геометрическое изображение комплексных чисел § 3. Формы записи комплексных чисел § 4. ...
Наглядная геометрия

Наглядная геометрия

геометрия Урок 1. Сегодня мы отправляемся в путешествие в удивительную страну, которая называется ГЕОМЕТРИЯ. Что такое геометрия? Какими инструментами ...
Наглядная геометрия для начальной школы

Наглядная геометрия для начальной школы

Содержание. Урок 1 Урок 2 Урок 3 Урок 4. Урок 1 Путешествие в страну Геометрия. Знакомство с веселой Точкой. Начнем урок. Наша школьная страна. Не ...
Лобачевский и его геометрия

Лобачевский и его геометрия

Гипотеза:. Любая теория современной науки считается единственно верной, пока не создана следующая. Невозможность доказать некоторое геометрическое ...
Математика геометрия

Математика геометрия

ГЛАВА 1. История математики. ГЛАВА 2. Математика. ГЛАВА 3. Геометрия И последнее…. Что такое математика. Она изучает числа и величины, отношения и ...
Занимательная геометрия

Занимательная геометрия

КРОССВОРД Т О Ч К А. П Р Я М О Й. О Т Р Е З О К. О К Р У Ж Н О С Т Ь. К В А Д Р А Т. Л У Ч. На каком из рисунков клеточки А2, В1, С3 закрашены? На ...
Зачем нужна наука геометрия?

Зачем нужна наука геометрия?

Что означает термин геометрия??? Из истории возникновения геометрии. Где изучают геометрию? Виды углов. Виды треугольников. Зачем нужна геометрия??? ...
геометрия решение задачи

геометрия решение задачи

Дано: а-прямая, A B а Построить: BC=2AB Решение:. A,B-точки на прямой,. (на луче BA). Измерим циркулем расстояние между A и B,. отложим отрезок AC ...
Живая геометрия

Живая геометрия

Цель проекта :. - создание художественно-оформительной студии Пютагорас; Коллекция открыток и коллекция ювелирных изделий. Задачи проекта :. Образовательные: ...
Алгебра и геометрия

Алгебра и геометрия

История. Женщина обучает детей геометрии. Иллюстрация из парижской рукописи Евклидовых «Начал», начало XIV века. Средние века немного дали геометрии, ...
«Скалярное произведение векторов» геометрия

«Скалярное произведение векторов» геометрия

Таблица значений для углов, равных 300, 450, 600. Заполните таблицу. Формулы приведения. sin( )= cos( )= -. Проверка д.з. № 1039 Диагонали квадрата ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
«Ломаная» геометрия

«Ломаная» геометрия

Найдите соответствие. Ответы. Ломаная Тема урока:. Какие из фигур являются ломаными? А Б В Г Д. Ответ А В Г. Кусок проволоки возьми И его ты перегни. ...
«Конус» геометрия

«Конус» геометрия

История изучения геометрического тела конус. С именем Евклида связывают становление александрийской математики (геометрической алгебры) как науки. ...
Древняя геометрия

Древняя геометрия

еликие учёные древности. Развитие математики происходило в древнегреческой школе, основателем которой был легендарный Пифагор (564-473 г.г. до н. ...
В моде – геометрия

В моде – геометрия

Мода 60 – ых, и поп - арт. Наряды с геометрическими формами смотрятся очень остро. В моде 1920-х годов большое влияние оказало авангардное искусство-от ...

Конспекты

Длина окружности. Число Пи

Длина окружности. Число Пи

Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа №36 г. Томска. Конспект урока математики в 6 классе. ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:1 октября 2019
Категория:Математика
Содержит:31 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации