- Подготовлю справочник по геометрии (или как повторить геометрию к экзамену)

Презентация "Подготовлю справочник по геометрии (или как повторить геометрию к экзамену)" – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11

Презентацию на тему "Подготовлю справочник по геометрии (или как повторить геометрию к экзамену)" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 11 слайд(ов).

Слайды презентации

проект. Подготовлю справочник по геометрии (или как повторить геометрию к экзамену).
Слайд 1

проект

Подготовлю справочник по геометрии (или как повторить геометрию к экзамену).

1. Остроугольный, тупоугольный и прямоугольный треугольник. Катеты и гипотенуза. Равнобедренный и равносторонний треугольник. 2.Основные свойства треугольников. Сумма углов треугольника. Внешний угол треугольника. 3.Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. 4.
Слайд 2

1. Остроугольный, тупоугольный и прямоугольный треугольник. Катеты и гипотенуза. Равнобедренный и равносторонний треугольник. 2.Основные свойства треугольников. Сумма углов треугольника. Внешний угол треугольника. 3.Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. 4.Замечательные линии и точки в треугольнике: высоты, медианы, Биссектрисы. 5. Срединные перпендикуляры, ортоцентр. 6.Треугольник и окружность. 7.Теорема Пифагора. Соотношение сторон в произвольном треугольнике.

ТРЕУГОЛЬНИК и всё связанное с ним. (курс 7-8 классов)

Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины. Если все три угла острые ( рис.20 ), то это остроугольный треугольник. Если один из углов прямой
Слайд 3

Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Если все три угла острые ( рис.20 ), то это остроугольный треугольник. Если один из углов прямой( рис.21 ), то это прямоугольный треугольник; стороны a, b, образующие прямой угол, называются катетами; сторона c, противоположная прямому углу, называется гипотенузой. Если один из углов тупой ( рис.22 ), то это тупоугольный треугольник.

Треугольник ABC ( рис.23 ) - равнобедренный, если две его стороны равны ( a = c ); эти равные стороны называются боковыми, третья сторона называется основанием треугольника. Треугольник ABC ( рис.24 ) – равносторонний, если все его стороны равны ( a = b = c ). В общем случае ( a b c ) мы имеем неравносторонний треугольник.

Основные свойства треугольников. В любом треугольнике: 1. Против большей стороны лежит больший угол, и наоборот. 2. Против равных сторон лежат равные углы, и наоборот. В частности, все углы в равностороннем треугольнике равны. 3. Сумма углов треугольника равна 180 º . Из двух последних свойств следу
Слайд 4

Основные свойства треугольников. В любом треугольнике:

1. Против большей стороны лежит больший угол, и наоборот. 2. Против равных сторон лежат равные углы, и наоборот. В частности, все углы в равностороннем треугольнике равны. 3. Сумма углов треугольника равна 180 º . Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 º. 4. Продолжая одну из сторон треугольника , получаем внешний угол . Внешний угол треугольника равен сумме внутренних углов, не смежных с ним. 5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c, a > b – c; b < a + c, b > a – c; c < a + b, c > a – b ).

ПРИЗНАКИ РАВЕНСТВА! Признаки равенства треугольников. Треугольники равны, если у них соответственно равны: a) две стороны и угол между ними; b) два угла и прилегающая к ним сторона; c) три стороны. Признаки равенства прямоугольных треугольников. Два прямоугольных треугольника равны, если выполняется
Слайд 5

ПРИЗНАКИ РАВЕНСТВА!

Признаки равенства треугольников. Треугольники равны, если у них соответственно равны: a) две стороны и угол между ними; b) два угла и прилегающая к ним сторона; c) три стороны. Признаки равенства прямоугольных треугольников. Два прямоугольных треугольника равны, если выполняется одно из следующих условий: 1) равны их катеты; 2) катет и гипотенуза одного треугольника равны катету и гипотенузе другого; 3) гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого; 4) катет и прилежащий острый угол одного треугольника равны катету и прилежащему острому углу другого; 5) катет и противолежащий острый угол одного треугольника равны катету и противолежащему острому углу другого.

ЗАМЕЧАТЕЛЬНЫЕ ЛИНИИ И ТОЧКИ В ТРЕУГОЛЬНИКЕ! Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугол
Слайд 6

ЗАМЕЧАТЕЛЬНЫЕ ЛИНИИ И ТОЧКИ В ТРЕУГОЛЬНИКЕ!

Высота треугольника - это перпендикуляр, опущенный из любой вершины на противоположную сторону ( или её продолжение ). Эта сторона называется основанием треугольника. Три высоты треугольника всегда пересекаются в одной точке, называемой ортоцентром треугольника. Ортоцентр остроугольного треугольника ( точка O, рис.26 ) расположен внутри треугольника, а ортоцентр тупоугольного треугольника ( точка O, рис.27 ) – снаружи; ортоцентр прямоугольного треугольника совпадает с вершиной прямого угла.

Медиана – это отрезок, соединяющий любую вершину треугольника с серединой противоположной стороны. Три медианы треугольника ( AD, BE, CF, рис.28 ) пересекаются в одной точке O, всегда лежащей внутри треугольника и являющейся его центром тяжести. Эта точка делит каждую медиану в отношении 2:1, считая от вершины. Биссектриса – это отрезок биссектрисы угла от вершины до точки пересечения с противоположной стороной. Три биссектрисы треугольника ( AD, BE, CF, рис.29 ) пересекаются в одной точке О, всегда лежащей внутри треугольника и являющейся центром вписанного круга. Биссектриса делит противоположную сторону на части, пропорциональные прилегающим сторонам; например, на рис.29 AE : CE = AB : BC .

Серединный перпендикуляр! Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка(стороны). Три срединных перпендикуляра треугольника АВС ( KO, MO, NO, рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K, M, N – середины сторон треугольника
Слайд 7

Серединный перпендикуляр!

Срединный перпендикуляр – это перпендикуляр, проведенный из средней точки отрезка(стороны). Три срединных перпендикуляра треугольника АВС ( KO, MO, NO, рис.30 ) пересекаются в одной точке О, являющейся центром описанного круга ( точки K, M, N – середины сторон треугольника ABC ).

В остроугольном треугольнике эта точка лежит внутри треугольника; в тупоугольном – снаружи; в прямоугольном - в середине гипотенузы. Ортоцентр, центр тяжести, центр описанного и центр вписанного круга совпадают только в равностороннем треугольнике.

Центр вписанной окружности — точка пересечения биссектрис треугольника. Центр описанной окружности — точка пересечения серединных перпендикуляров. центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы; центр описанной и вписанной окружностей треугольника совпадают
Слайд 8

Центр вписанной окружности — точка пересечения биссектрис треугольника. Центр описанной окружности — точка пересечения серединных перпендикуляров

центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы; центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник — правильный.

Теорема Пифагора! (соотношение сторон). Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов . Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a, b и гипотенузой c. Построим кв
Слайд 9

Теорема Пифагора! (соотношение сторон)

Теорема Пифагора. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов . Доказательство теоремы Пифагора с очевидностью следует из рис.31. Рассмотрим прямоугольный треугольник ABC с катетами a, b и гипотенузой c. Построим квадрат AKMB, используя гипотенузу AB как сторону. Затем продолжим стороны прямоугольного треугольника ABC так, чтобы получить квадрат CDEF, сторона которого равна a+ b . Теперь ясно, что площадь квадрата CDEF равна ( a + b ) 2. С другой стороны, эта площадь равна сумме площадей четырёх прямоугольных треугольников и квадрата AKMB, то есть c 2 + 4 ( ab / 2 ) = c 2 + 2 ab , отсюда, c 2 + 2 ab = ( a + b ) 2 , и окончательно имеем: c 2 = a 2 + b 2 .

В общем случае ( для произвольного треугольника ) имеем: c 2 = a 2 + b 2 – 2ab · cos C, где C – угол между сторонами a и b .

Соотношение сторон в произвольном треугольнике.

Работу выполнила Ученица 9 «Б» класса ГОУ СОШ №337 Ефимочкина Александра. 17.05.11г.
Слайд 10

Работу выполнила Ученица 9 «Б» класса ГОУ СОШ №337 Ефимочкина Александра.

17.05.11г.

Руководитель проекта. Учитель высшей квалификационной категории Мартыненко Оксана Михайловна; ГОУ СОШ №337 Невского административного района Г. Санкт-Петербург. 2011 г.
Слайд 11

Руководитель проекта

Учитель высшей квалификационной категории Мартыненко Оксана Михайловна; ГОУ СОШ №337 Невского административного района Г. Санкт-Петербург. 2011 г.

Список похожих презентаций

Анализ учебников по геометрии

Анализ учебников по геометрии

Хорошо известно, что успехи в обучении школьников во многом зависят от содержания и структуры учебника, по которому они занимаются. По одним учебникам ...
А Какую геометрию знаешь ты?

А Какую геометрию знаешь ты?

План презентации: Краткие биографические данные Основные виды геометрии Геометрия Евклида Геометрия Лобачевского Геометрия Римана Применение Всех ...
Анализ контрольной работы по математике на тему "Натуральные числа и шкалы"

Анализ контрольной работы по математике на тему "Натуральные числа и шкалы"

Натуральные числа и шкалы. 5 к л а с с № 1. Цели деятельности учителя. Главная дидактическая цель : организовать деятельность учащихся, направленную ...
альбом по математике

альбом по математике

Формирование базовых знаний, умений и навыков должно быть связано с творческой деятельностью, с развитием индивидуальных задатков учащихся, их познавательной ...
Аксиомы геометрии

Аксиомы геометрии

Евклид и его труды III в до н.э. Такой подход, когда сначала формируются исходные положения-аксиомы, а затем на их основе путем логических рассуждений ...
«Задачи по математике»

«Задачи по математике»

Успех каждого – это шаг к успеху всего класса. Реши примеры 5 ·8 5·5 4·6 8·8 25-5 36-6. 48-8 99-9 6·10 50·10 4·10 7·100. =40 =25 =24 =64 =20 =90 =60 ...
Авторалли по городам математики

Авторалли по городам математики

Цель: Закрепить навык выполнения действий, возведения чисел в квадрат и куб, закрепить формулы пути и площади. Расширение кругозора учащихся, развитие ...
2 класс Тренажер по математике

2 класс Тренажер по математике

Выбери героя, нажав на него, с кем хочешь проверить свои знания! 7 + 7 18 12 14. 7 + 9 16 15. 7 + 4 11. 7 + 8 17. 7 + 6 13. 10 + 6. 10 + 8 10. 10 ...
«Уравнения по математике»

«Уравнения по математике»

17.10.12. Классная работа. Тема: «Уравнения». Решение уравнений. Математические фокусы. Составление равенств. «Секретная» сказка. «Математику нельзя ...
«Решение задач по математике»

«Решение задач по математике»

10 февраля. В классе. Задача условие вопрос решение ответ. Быстро и правильно считать. Правильно записывать решение задачи. Кричать и сердиться, когда ...
«Решение задания С1 ЕГЭ по информатике и ИКТ»

«Решение задания С1 ЕГЭ по информатике и ИКТ»

2 балла. Решение задания С1 ЕГЭ по информатике и ИКТ.  Кунина В.В. область I  область II. 0 x y y = x+2 y2 + x2 = 25 y2 + x2  25 y  0 x  0 область ...
«Олимпийский» задачник по математике

«Олимпийский» задачник по математике

Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи — решайте их Д. Пойа. Если мы действительно что-то ...
«Моя математика» - задачи на нахождение целого или части

«Моя математика» - задачи на нахождение целого или части

МАТЕМАТИКА 1 3 4 5 7 6 8 9 0. Работа с числовым рядом. http://www.bajena.com/ru/kids/mathematics/sum-mathematics.php. 1. Прочитайте текст справа и ...
«Лабораторные работы по геометрии»

«Лабораторные работы по геометрии»

Вписанная и описанная окружности. Цель работы: Проверить при построении в любой ли треугольник можно вписать окружность и вокруг любого ли треугольника ...
Анализ обучающих программ по математике 1-4 класс

Анализ обучающих программ по математике 1-4 класс

Интерактивная математика для 1-4 классов. Программа фирмы Marco Polo Group. Описание продукта: Интерактивный тренажер по математике для начальной ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
"Магические квадраты – магия или наука

"Магические квадраты – магия или наука

Милостивый государь, я составил магический квадрат 21-го порядка! - А я рамочный 23-го! (из переписи Баше де Мезириака и Рене Декарта). Составление ...
Апробация инструментария диагностических исследований профессиональной компетентности учителей начальных классов по математике

Апробация инструментария диагностических исследований профессиональной компетентности учителей начальных классов по математике

Проводится в соответствии приказом управления образования и науки области от 18.03.2010 №841 «О проведении апробации инструментария диагностического ...
«Скалярное произведение векторов» геометрия

«Скалярное произведение векторов» геометрия

Таблица значений для углов, равных 300, 450, 600. Заполните таблицу. Формулы приведения. sin( )= cos( )= -. Проверка д.з. № 1039 Диагонали квадрата ...
«Конус» геометрия

«Конус» геометрия

История изучения геометрического тела конус. С именем Евклида связывают становление александрийской математики (геометрической алгебры) как науки. ...

Конспекты

Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Во сколько раз одно число больше или меньше другого

Во сколько раз одно число больше или меньше другого

Тема :. Во сколько раз одно число больше или меньше другого. Цель:. Формировать умения и навыки решать задачи на нахождение, во сколько раз одно ...
Виртуальное путешествие по Америке при помощи математических вычислений

Виртуальное путешествие по Америке при помощи математических вычислений

Негосударственное частное образовательное учреждение для детей дошкольного и младшего школьного возраста «Прогимназия № 63 ОАО «РЖД». ...
Алгебраические выражения. Подготовка к экзаменам

Алгебраические выражения. Подготовка к экзаменам

Государственное бюджетное специальное (коррекционное) образовательное учреждение для обучающихся, воспитанников с ограниченными возможностями здоровья ...
Больше или меньше

Больше или меньше

. Подробный конспект урока. Организационная информация. Тема урока. . Больше или меньше. . . Предмет. . Математика. . . ...
Больше или меньше

Больше или меньше

Тема урока: Больше или меньше. I. Образовательные цели:. закрепить умения и навыки. сравнения натуральных чисел. . записи результата ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:7 июня 2019
Категория:Математика
Содержит:11 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации