- Векторы в пространстве

Презентация "Векторы в пространстве" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27

Презентацию на тему "Векторы в пространстве" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 27 слайд(ов).

Слайды презентации

Векторы в пространстве. учитель математики МКОУ СОШ с УИОП № 1 г. Малмыжа Кировской области учитель математики Дягилева Л. В.
Слайд 1

Векторы в пространстве

учитель математики МКОУ СОШ с УИОП № 1 г. Малмыжа Кировской области учитель математики Дягилева Л. В.

Цели урока. Знать: определение вектора в пространстве и связанные с ним понятия; равенство векторов. Уметь: решать задачи по данной теме.
Слайд 2

Цели урока

Знать: определение вектора в пространстве и связанные с ним понятия; равенство векторов. Уметь: решать задачи по данной теме.

Физические величины. Скорость Ускорение а Перемещение s Сила F. v
Слайд 3

Физические величины

Скорость Ускорение а Перемещение s Сила F

v

Электрическое поле. Е
Слайд 4

Электрическое поле

Е

Магнитное поле Направление тока в
Слайд 5

Магнитное поле Направление тока в

Понятие вектора появилось в 19 веке в работах математиков Г. Грассмана У. Гамильтона
Слайд 6

Понятие вектора появилось в 19 веке в работах математиков Г. Грассмана У. Гамильтона

Современная символика для обозначения вектора r была введена в 1853 году французским математиком О. Коши.
Слайд 7

Современная символика для обозначения вектора r была введена в 1853 году французским математиком О. Коши.

Задание Записать все термины по теме «Векторы на плоскости». Вектор Нулевой вектор Длина вектора Коллинеарные векторы Сонаправленные векторы Противоположно направленные векторы Равенство векторов
Слайд 8

Задание Записать все термины по теме «Векторы на плоскости».

Вектор Нулевой вектор Длина вектора Коллинеарные векторы Сонаправленные векторы Противоположно направленные векторы Равенство векторов

Определение вектора в пространстве. Отрезок, для которого указано, какой из его концов считается началом, а какой- концом, называется вектором.
Слайд 9

Определение вектора в пространстве

Отрезок, для которого указано, какой из его концов считается началом, а какой- концом, называется вектором.

Т. Любая точка пространства также может рассматриваться как вектор. Такой вектор называется. нулевым.
Слайд 10

Т

Любая точка пространства также может рассматриваться как вектор. Такой вектор называется

нулевым.

Длина ненулевого вектора. Длиной вектора АВ называется длина отрезка АВ. Длина вектора АВ (вектора а) обозначается так: АВ , а Длина нулевого вектора считается равной нулю: 0 = 0
Слайд 11

Длина ненулевого вектора

Длиной вектора АВ называется длина отрезка АВ. Длина вектора АВ (вектора а) обозначается так: АВ , а Длина нулевого вектора считается равной нулю:

0 = 0

Определение коллинеарности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых.
Слайд 12

Определение коллинеарности векторов

Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых.

Коллинеарные векторы. Противоположно направленные векторы. Сонаправленные векторы
Слайд 13

Коллинеарные векторы

Противоположно направленные векторы

Сонаправленные векторы

Какие векторы на рисунке сонаправленные? Какие векторы на рисунке противоположно направленные? Найти длины векторов АВ; ВС; СС1. A B C D В1 D1 A1 C1. Сонаправленные векторы: Противоположно-направленные: 5 см 3 см 9 см
Слайд 14

Какие векторы на рисунке сонаправленные? Какие векторы на рисунке противоположно направленные? Найти длины векторов АВ; ВС; СС1.

A B C D В1 D1 A1 C1

Сонаправленные векторы:

Противоположно-направленные:

5 см 3 см 9 см

Равенство векторов. Векторы называются равными, если они сонаправлены и их длины равны. А В С
Слайд 15

Равенство векторов

Векторы называются равными, если они сонаправлены и их длины равны.

А В С

Могут ли быть равными векторы на рисунке? Ответ обоснуйте. Рисунок № 1 Рисунок № 2. М Н О
Слайд 16

Могут ли быть равными векторы на рисунке? Ответ обоснуйте.

Рисунок № 1 Рисунок № 2

М Н О

Доказать, что от любой точки пространства можно отложить вектор, равный данному, и притом только один. Дано: а, М. Доказать: в = а, М в, единственный. Доказательство: Проведем через вектор а и точку М плоскость. К
Слайд 17

Доказать, что от любой точки пространства можно отложить вектор, равный данному, и притом только один

Дано: а, М. Доказать: в = а, М в, единственный.

Доказательство:

Проведем через вектор а и точку М плоскость.

К

Решение задач № 322 Д А1 С1 Д1. Укажите на этом рисунке все пары: а) сонаправленных векторов. б) противоположно направленных векторов. в) равных векторов
Слайд 18

Решение задач № 322 Д А1 С1 Д1

Укажите на этом рисунке все пары:

а) сонаправленных векторов

б) противоположно направленных векторов

в) равных векторов

№ 321 (б) B1 Решение: DC1 = DB = DB1 =
Слайд 19

№ 321 (б) B1 Решение: DC1 = DB = DB1 =

Р N Q. Дано: точки М, N, P,Q – середины сторон AB, AD, DC, BC; AB=AD= DC=BC=DD=AC; а) выписать пары равных векторов; б) определить вид четырехугольника MNHQ . NM-средняя линяя треугольника ADB, MN = 0,5DB, MN\DB, MQ-средняя линия тр. ABC, MQ = 0,5AC, MQ\AC, Решение: NP-средняя линия треугольника A
Слайд 20

Р N Q

Дано: точки М, N, P,Q – середины сторон AB, AD, DC, BC; AB=AD= DC=BC=DD=AC;

а) выписать пары равных векторов;

б) определить вид четырехугольника MNHQ .

NM-средняя линяя треугольника ADB, MN = 0,5DB, MN\\DB,

MQ-средняя линия тр. ABC, MQ = 0,5AC, MQ\\AC,

Решение: NP-средняя линия треугольника ADC, NP = 0,5AC, NP\\AC;

NP=MQ, NP\\MQ.

PQ-средняя линия треугольника DВC; PQ = 0,5DB, PQ\\DB;

PQ=MN, PQ\\MN. № 323

По условию все ребра тетраэдра равны, то он правильный и скрещивающиеся ребра в нем перпендикулярны. DB перпендикулярно АС . NP=MQ=PQ=MN NP\MQ MN\PQ MNPQ- квадрат
Слайд 21

По условию все ребра тетраэдра равны, то он правильный и скрещивающиеся ребра в нем перпендикулярны. DB перпендикулярно АС .

NP=MQ=PQ=MN NP\\MQ MN\\PQ MNPQ- квадрат

№ 326 (а, б, в)
Слайд 22

№ 326 (а, б, в)

Самостоятельная работа. Дан тетраэдр МАВС, угол АСВ прямой. Точки К и Р середины сторон МВ и МС, АС = 9 см и ВА = 15 см. Найти КМ . Решение: Треугольник АВС, угол АСВ- прямой. 9 15. По теореме Пифагора
Слайд 23

Самостоятельная работа

Дан тетраэдр МАВС, угол АСВ прямой. Точки К и Р середины сторон МВ и МС, АС = 9 см и ВА = 15 см. Найти КМ . Решение:

Треугольник АВС, угол АСВ- прямой.

9 15

По теореме Пифагора

Кроссворд Г А М И Л Ь Т О Н В Е К Т О Р. К О Л Л И Н Е А Р Н Ы Е. К О Ш И Д Л И Н А И Н Д У К Ц И И Р А В Н Ы М И 1 2 4 5 6 7
Слайд 24

Кроссворд Г А М И Л Ь Т О Н В Е К Т О Р

К О Л Л И Н Е А Р Н Ы Е

К О Ш И Д Л И Н А И Н Д У К Ц И И Р А В Н Ы М И 1 2 4 5 6 7

Домашнее задание. Стр. 84 – 85 № 320, 321(а), 325.
Слайд 25

Домашнее задание

Стр. 84 – 85 № 320, 321(а), 325.

Перемена
Слайд 26

Перемена

Список литературы: 1. «Геометрия 10-11» Учебник для общеобразовательных учреждений. Л. С. Атанасян, И. Ф. Бутузов, С. Б. Кадомцев и др. М.: Просвещение, 2010. 2. Энциклопедический словарь юного математика. Сост. Э 68 А.. П. Савин.- М. Педагогика, 1985. 3. Поурочные разработки по геометрии: 10 класс
Слайд 27

Список литературы: 1. «Геометрия 10-11» Учебник для общеобразовательных учреждений. Л. С. Атанасян, И. Ф. Бутузов, С. Б. Кадомцев и др. М.: Просвещение, 2010. 2. Энциклопедический словарь юного математика. Сост. Э 68 А.. П. Савин.- М. Педагогика, 1985. 3. Поурочные разработки по геометрии: 10 класс (сост. В. А. Яровенко) в помощь школьному учителю- М.: ВАКО, 2007. 4 Сайты: http://images.yandex.ru/yandsearch?ed=1&text=%D0%9A%D0%B0%D1%80%D1%82%D0%B8%D0%BD%D0%BA%D0%B8%20%D0%BD%D0%B0%20%D1%88%D0%BA%D0%BE%D0%BB%D1%8C%D0%BD%D1%83%D1%8E%20%D1%82%D0%B5%D0%BC%D1%83&p=1&img_url=img1.liveinternet.ru%2Fimages%2Fattach%2Fc%2F3%2F76%2F873%2F76873211_default.jpg&rpt=simage http://images.yandex.ru/yandsearch?ed=1&text=%D0%9A%D0%B0%D1%80%D1%82%D0%D0%BB%D1%8C%D0%BD%D1%83%D1%8E%20%D1%82%D0%B5%D0%BC%D1%83&img_url=i.allday.ru%2Fuploads%2Fposts%2Fthumbs%2F1217821185_12.jpg&rpt=simage&p=2 http://images.yandex.ru/yandsearch?text=%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D1%8B%20%D0%B2%20%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8%20%D0%BA%D0%B0%D1%80%D1%82%D0%B8%D0%BD%D0%BA%D0%B8&img_url=www.statistica.com.au%2FMATHSC%257E1%2Fimg560.gif&rpt=simage&p=145 http://ru.wikipedia.org/wiki/Файл:Cauchy_Augustin_Louis_dibner_coll_SIL14-C2-03a.jpg http://ru.wikipedia.org/wiki/Файл:William_Rowan_Hamilton_painting.jpg http://ru.wikipedia.org/wiki/Файл:Hgrassmann.jpg

Список похожих презентаций

"Векторы в пространстве"

"Векторы в пространстве"

Векторы в пространстве. Тема урока:. ТАБЛИЦА «Векторы в пространстве». ФИЗИКА. Направление движения тела. ЭЛЕКТРОТЕХНИКА. Движение заряженных частиц ...
Алгебраические поверхности в пространстве

Алгебраические поверхности в пространстве

Цели и задачи. Цели: Рассмотреть основные понятия по теме «Алгебраические поверхности второго порядка в пространстве» Задачи: Рассмотреть понятие ...
«Симметрия в пространстве» геометрия

«Симметрия в пространстве» геометрия

Что такое симметрия? Симметрия в переводе с греческого означает соразмерность. Под симметрией принято понимать свойство геометрической фигуры, расположенной ...
"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

"Взаимное расположение прямых в пространстве. Угол между двумя прямыми

«Крупное научное открытие дает решение крупной проблемы, но и в решении любой задачи присутствует крупица открытия». Дьердье Пойа, венгерский математик. ...
Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах

Бийская крепость в цифрах и фактах. Цели урока:. Познакомиться с историей возникновения родного города Научиться определять временные промежутки и ...
Без математики, друзья, в жизни нам никак нельзя

Без математики, друзья, в жизни нам никак нельзя

Актуальность. Математика находится в тесной связи со всеми естественными, гуманитарными, точными науками и др., математические знания применяются ...
Арифметические операции в позиционных системах счисления

Арифметические операции в позиционных системах счисления

Ответьте на вопросы:. Какие системы называются НЕПОЗИЦИОННЫМИ? Какие системы называются ПОЗИЦИОННЫМИ? Какое число называют – ОСНОВАНИЕ позиционной ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

ЗАДАНИЕ «ТЕЗИСЫ». Верно ли каждое из следующих утверждений? Если «Да», то записывайте 1. Если «Нет», то записывайте 0. В результате должно получиться ...
Арифметические действия в двоичной системе счисления

Арифметические действия в двоичной системе счисления

Самостоятельная работа. Вариант I Вариант II. Выполнить действия в двоичной системе счисления:. 1) 101012 + 1012 2) 101012 + 10102 3) 1000012 – 1102 ...
Арифметическая прогрессия в древности

Арифметическая прогрессия в древности

Египетские папирусы и вавилонские клинописные таблички, относящие ко II тыс. до н.э., содержат примеры задач на арифметическую прогрессию. Каких-либо ...
"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

"Смешанные дроби. Представление смешанного числа в виде неправильной дроби".

Смешанные дроби. Представление смешанного числа в виде неправильной дроби. 02.03. Определите координаты точек А, В, С и М. ...
Больше в несколько раз, меньше в несколько раз

Больше в несколько раз, меньше в несколько раз

ЦЕЛЬ УРОКА. раскрытие смысла слов “больше (меньше) в несколько раз”. Расположите числа в порядке возрастания. 18, 9, 45, 27, 36, 72, 54, 63, 9, 18, ...
Алгебраические кривые в полярной системе координат и их применение в природе и технике

Алгебраические кривые в полярной системе координат и их применение в природе и технике

Цель: познакомиться с кривыми, не изучаемыми в школьном курсе алгебры, найти для них примеры в природе и технике. Локон Аньези. плоская кривая, геометрическое ...
Алгебра в 9 классе.

Алгебра в 9 классе.

Функция их свойства и графики. Сформулируйте определение чётной функции, определение нечётной функции. Не является ни чётной, ни нечётной. чётная ...
5.Уравнение в полных дифференциалах. Интегрирующий множитель

5.Уравнение в полных дифференциалах. Интегрирующий множитель

Теорема:. Для того чтобы дифференцировать выражение , где и определены и непрерывны в области плоскости и имеют в ней непрерывные частные производные ...
«Математика в профессиях»

«Математика в профессиях»

Ознакомление с типами профессий и характеристиками труда. Исследование значения математики в различных областях деятельности человека. Развитие познавательной ...
«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

«Закрепление изученого» (Сложение и вычитание с переходом через десяток в пределах 20)

Цели урока:. 1. Закрепить знания о сложении и вычитании с переходом через десяток в приделах 20. 2. Упражняться в решении задач изученных видов. План ...
Биография М.В. Ломоносова в цифрах

Биография М.В. Ломоносова в цифрах

=2 =0,3 =3,6 =0,04 =1 =0,8 =0,42 =21,2 М И Ш А Н С К О Е. Ломоносов Родился в с. Мишанинском Архангельской губернии. 8 ноября 1711. Длина = 15,5 м ...
Биссектриса угла в треугольнике

Биссектриса угла в треугольнике

Задачи УЧЕБНИК А О В С D 80º ? 180º- 80º= 100º 100º Ответ:155º, 25º, 155º. Задача №535 биссектриса ? Определение. Биссектриса угла – это луч с началом ...
"Симметрия в архитектуре Старого Оскола"

"Симметрия в архитектуре Старого Оскола"

Остановка 1. Главная улица города – улица Ленина. Мы находимся в центре нашего города у здания администрации. Какие приемы использовал архитектор, ...

Конспекты

Векторы на плоскости

Векторы на плоскости

. Конспект. обобщающего урока по теме «Векторы на плоскости». . (геометрия 9 класс). Тема. Систематизация и обобщение изученного материала ...
Векторы

Векторы

. Академия АйТи. ИТОГОВАЯ РАБОТА. по программе:. «Применение международных информационных технологий: применение ИКТ в учебном процессе». ...
Виды углов в планиметрии

Виды углов в планиметрии

Лабораторно-практические занятия по геометрии в 7 классе. Лабораторно-практические занятия имеют важное значение, особенно при обучении детей с ...
Видеть и слышать, или как не потеряться в мире информации

Видеть и слышать, или как не потеряться в мире информации

Конспект – сценарий урока, разработанного учителями МОУ Брызгаловская СОШ Ивановой Е.Б. и Колпаковой Л.В. Тема: «Видеть и слышать, или как не потеряться ...
Введение в теорию вероятностей

Введение в теорию вероятностей

9 класс. Тема: Введение в теорию вероятностей.(90 мин.). Развитие и образование ни одному человеку не могут быть даны или сообщены. Всякий, ...
Бородинское сражение в математических задачах

Бородинское сражение в математических задачах

Открытый урок «Бородинское сражение в математических задачах». Карташова Ирина Викторовна , учитель математики МБОУ «Бирюковская СОШ». Техническое ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Арифметический способ отбора корней в тригонометрических уравнениях

Арифметический способ отбора корней в тригонометрических уравнениях

Конспект урока для 11 класса на тему «Арифметический способ отбора корней в тригонометрических уравнениях». Цели и задачи урока:. . . повторение ...
I признак равенства треугольников в задачах

I признак равенства треугольников в задачах

ТЕМА УРОКА:. I. признак равенства треугольников в задачах. ТИП УРОКА. : закрепление изученного материала. КОНТИНГЕНТ УЧАЩИХСЯ:. 7 класс. ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:3 апреля 2019
Категория:Математика
Содержит:27 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации