- Перпендикулярность прямой и плоскости

Презентация "Перпендикулярность прямой и плоскости" по математике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24

Презентацию на тему "Перпендикулярность прямой и плоскости" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Математика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 24 слайд(ов).

Слайды презентации

Признак перпендикулярности прямой и плоскости. Васильева Наталья Евгеньевна учитель математики МОУ средняя общеобразовательная школа №1 г. Малая Вишера
Слайд 1

Признак перпендикулярности прямой и плоскости

Васильева Наталья Евгеньевна учитель математики МОУ средняя общеобразовательная школа №1 г. Малая Вишера

Цели урока: Материалы этого урока знакомят с признаком перпендикулярности прямой и плоскости и свойствами перпендикулярных прямой и плоскости. Окружающий нас мир дает много примеров перпендикулярности прямой и плоскости. Правильно установленный вертикальный столб перпендикулярен к плоскости земли. Л
Слайд 2

Цели урока:

Материалы этого урока знакомят с признаком перпендикулярности прямой и плоскости и свойствами перпендикулярных прямой и плоскости. Окружающий нас мир дает много примеров перпендикулярности прямой и плоскости. Правильно установленный вертикальный столб перпендикулярен к плоскости земли. Линии пересечения стен комнаты перпендикулярны к плоскости пола. При строительстве зданий при установке столбов для их устойчивости очень важно обеспечить перпендикулярность к поверхности земли. Для этого существуют специальные способы проверки перпендикулярности, основанные на признаке перпендикулярности прямой и плоскости и свойствах перпендикулярных прямой и плоскости, которые мы и будем изучать. Изучив материалы предыдущего урока, вы познакомились с определением и свойствами перпендикулярных прямых, с определением прямой перпендикулярной к плоскости. Повторите еще раз эти материалы. Это поможет вам правильно ответить на вопросы теста, проверяющего ваши знания по теме «Перпендикулярные прямые».

Перпендикулярные прямые. Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 900. Для обозначения перпендикулярности используется знак ┴. На рисунке прямая m перпендикулярна прямой n или m┴n. Лемма о перпендикулярных прямых Если одна из двух
Слайд 3

Перпендикулярные прямые

Две прямые в пространстве называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 900. Для обозначения перпендикулярности используется знак ┴. На рисунке прямая m перпендикулярна прямой n или m┴n.

Лемма о перпендикулярных прямых Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой. Символически эту лемму можно записать так

Прямая, перпендикулярная к плоскости. Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой на этой плоскости. Для обозначения перпендикулярности используется знак ┴. На рисунке изображена прямая а, перпендикулярная плоскости a или а┴α.
Слайд 4

Прямая, перпендикулярная к плоскости

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой на этой плоскости. Для обозначения перпендикулярности используется знак ┴. На рисунке изображена прямая а, перпендикулярная плоскости a или а┴α.

Теорема о двух параллельных прямых и плоскости. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. Символически эту теорему можно записать так. Теорема о двух прямых, перпендикулярных к плоскости. Если две прямые перпендикулярны к
Слайд 5

Теорема о двух параллельных прямых и плоскости

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости. Символически эту теорему можно записать так

Теорема о двух прямых, перпендикулярных к плоскости

Если две прямые перпендикулярны к плоскости, то они параллельны друг другу. Символически эту теорему можно записать так

Наверное, каждому приходилось вкапывать штанги футбольных ворот. До перекладины порой и не доходило. Как важно при этом было так установить штангу так, чтобы она была перпендикулярна поверхности земли. Если использовать определение перпендикулярности прямой к плоскости, то тогда следует проверять пе
Слайд 6

Наверное, каждому приходилось вкапывать штанги футбольных ворот. До перекладины порой и не доходило. Как важно при этом было так установить штангу так, чтобы она была перпендикулярна поверхности земли. Если использовать определение перпендикулярности прямой к плоскости, то тогда следует проверять перпендикулярность штанги к каждой прямой на футбольном поле. А нельзя ли ограничиться меньшим числом проверок? Оказывается можно. Но одной проверки явно недостаточно. Если данная прямая перпендикулярна только к одной прямой на плоскости, то она не перпендикулярна к самой плоскости (рис.3). Она может и лежать в этой плоскости. Если же прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна самой плоскости (рис.4). Это утверждение называется признаком перпендикулярности прямой и плоскости и формулируется в виде теоремы. Таким образом, чтобы установить штангу ворот перпендикулярно плоскости поля достаточно проверить ее перпендикулярность, посмотрев на нее с двух разных, но не противоположных сторон.

Теорема Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости. Пусть b┴q; b┴p; p  a; q  a; p ∩ q=O. Докажем, что b┴a. Для этого нужно доказать, что прямая b перпендикулярна к любой (произвольной) прямой m на плоскости a. Рассмотрим с
Слайд 7

Теорема Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Пусть b┴q; b┴p; p  a; q  a; p ∩ q=O. Докажем, что b┴a. Для этого нужно доказать, что прямая b перпендикулярна к любой (произвольной) прямой m на плоскости a. Рассмотрим сначала случай, когда прямая b проходит через точку пересечения О. Проведем через точку О прямую l, параллельную прямой m. Отметим на прямой b точки А и В, равноудаленные от точки O, и проведем в плоскости a прямую, пересекающую прямые p, l и q соответственно в точках P, L и Q. Так как прямые p и q – серединные перпендикуляры, то АР=ВР и AQ=BQ. Следовательно, ∆APQ=∆BPQ (по трем сторонам). Тогда APL= BPL и ∆ APL= ∆ BPL (по двум сторонам и углу). Тогда AL=BL. Следовательно, ∆ALB – равнобедренный, отрезок LO является медианой и высотой в этом треугольнике ,  AОL=900 и b┴l. Поскольку l || m, то b┴m (по лемме о перпендикулярных прямых), то есть b┴a.

Рассмотрим теперь случай, когда прямая а не проходит через точку О, но а┴q; а┴p. Проведем через точку О прямую, параллельную прямой а. Эта прямая перпендикулярна прямым p и q (по лемме о перпендикулярных прямых) и, следовательно, совпадает с прямой b. Поскольку b┴a и b||a, то а┴a (по теореме о двух
Слайд 8

Рассмотрим теперь случай, когда прямая а не проходит через точку О, но а┴q; а┴p. Проведем через точку О прямую, параллельную прямой а. Эта прямая перпендикулярна прямым p и q (по лемме о перпендикулярных прямых) и, следовательно, совпадает с прямой b. Поскольку b┴a и b||a, то а┴a (по теореме о двух параллельных прямых и плоскости). Теорема доказана. Символически эту теорему можно записать так

Докажем две теоремы, обосновывающие существование плоскости, проходящей через данную точку и перпендикулярной данной прямой и существование прямой, проходящей через данную точку и перпендикулярной к данной плоскости. При доказательстве этих теорем будет использован признак перпендикулярности прямой и плоскости.

Плоскость, перпендикулярная прямой. Обозначим данную прямую буквой а, а произвольную точку пространства – буквой М. 1. Докажем существование плоскости, перпендикулярной прямой а и проходящей через точку М. Проведем через прямую а две плоскости  и  так, чтобы плоскость  проходила через точку М.. В
Слайд 9

Плоскость, перпендикулярная прямой

Обозначим данную прямую буквой а, а произвольную точку пространства – буквой М. 1. Докажем существование плоскости, перпендикулярной прямой а и проходящей через точку М. Проведем через прямую а две плоскости  и  так, чтобы плоскость  проходила через точку М.. В плоскости  проведем через точку М прямую р, перпендикулярную прямой а и пересекающую ее в точке А. В плоскости  проведем прямую q, перпендикулярную прямой а и проходящую через точку А. Рассмотрим плоскость, проходящую через прямые p и q. Эта плоскость перпендикулярна прямой а (по признаку перпендикулярности прямой и плоскости) и проходит через произвольную точку М. Следовательно, это искомая плоскость. Существование доказано.

Теорема Через любую точку пространства проходит плоскость, перпендикулярная данной прямой и притом только одна.

2. Докажем единственность такой плоскости. Проведем доказательство от противного. Пусть существуют две плоскости  и , проходящие через точку М и перпендикулярные прямой а. Но тогда || . Но плоскости  и  не могут быть параллельными друг другу, так как имеют общую точку М. Следовательно наше пре
Слайд 10

2. Докажем единственность такой плоскости. Проведем доказательство от противного. Пусть существуют две плоскости  и , проходящие через точку М и перпендикулярные прямой а. Но тогда || . Но плоскости  и  не могут быть параллельными друг другу, так как имеют общую точку М. Следовательно наше предположение неверно и существует только одна плоскость, проходящая через произвольную точку пространства перпендикулярно данной прямой. Единственность доказана.

Теорема о прямой, перпендикулярной к плоскости Через любую точку пространства проходит прямая, перпендикулярная данной плоскости и притом только одна. Обозначим данную плоскость буквой a, а произвольную точку пространства – буквой М. 1. Докажем существование прямой, перпендикулярной плоскости  и пр
Слайд 11

Теорема о прямой, перпендикулярной к плоскости Через любую точку пространства проходит прямая, перпендикулярная данной плоскости и притом только одна.

Обозначим данную плоскость буквой a, а произвольную точку пространства – буквой М. 1. Докажем существование прямой, перпендикулярной плоскости  и проходящей через точку М. Проведем в плоскости  прямую b. Через точку М проведем плоскость , перпендикулярную прямой b (это мы можем сделать на основании предыдущей теоремы о плоскости перпендикулярной прямой). Пусть с –общая прямая плоскостей  и . Проведем в плоскости  через точку М прямую а, перпендикулярную прямой с. Тогда прямая а перпендикулярна к двум пересекающимся прямым, лежащим в плоскости . Следовательно, прямая а перпендикулярна плоскости a (по признаку перпендикулярности прямой и плоскости). Следовательно, а - искомая прямая. Существование доказано.

2. Докажем единственность такой прямой. Проведем доказательство от противного. Пусть существует две прямые а и а1, проходящие через точку М и перпендикулярные плоскости a. Но тогда а||а1 (см. теорему о двух прямых, перпендикулярных к плоскости). Но прямые а и а1 не могут быть параллельными друг друг
Слайд 12

2. Докажем единственность такой прямой. Проведем доказательство от противного. Пусть существует две прямые а и а1, проходящие через точку М и перпендикулярные плоскости a. Но тогда а||а1 (см. теорему о двух прямых, перпендикулярных к плоскости). Но прямые а и а1 не могут быть параллельными друг другу, так как имеют общую точку М. Следовательно наше предположение неверно и существует только одна прямая, проходящая через произвольную точку пространства перпендикулярно данной плоскости. Единственность доказана.

Примеры задач на доказательство. Примеры задач на вычисления. Дано: плоскость (АВС), МВ┴АВ, МВ┴ВС, D(АВС). Доказать:∆MBD - прямоугольный. Доказательство. МВ┴АВ, МВ┴ВС. Следовательно, МВ┴(АВС) (по признаку перпендикулярности прямой и плоскости). Тогда МВ┴BD (по определению прямой, перпендикулярной к
Слайд 13

Примеры задач на доказательство. Примеры задач на вычисления

Дано: плоскость (АВС), МВ┴АВ, МВ┴ВС, D(АВС). Доказать:∆MBD - прямоугольный. Доказательство. МВ┴АВ, МВ┴ВС. Следовательно, МВ┴(АВС) (по признаку перпендикулярности прямой и плоскости). Тогда МВ┴BD (по определению прямой, перпендикулярной к плоскости). Следовательно, DBM=900 и ∆MBD – прямоугольный, что и требовалось доказать.

Дано: АВСD - квадрат, МА┴, АВСD . Доказать: BD┴МО. Доказательство. МА┴, следовательно, МА┴ВD (по определению прямой, перпендикулярной к плоскости). ВD┴АО (по свойству квадрата). Тогда ВD┴(АОМ) (по признаку перпендикулярности прямой и плоскости – BD перпендикулярна двум пересекающимся прямым АО и
Слайд 14

Дано: АВСD - квадрат, МА┴, АВСD . Доказать: BD┴МО. Доказательство. МА┴, следовательно, МА┴ВD (по определению прямой, перпендикулярной к плоскости). ВD┴АО (по свойству квадрата). Тогда ВD┴(АОМ) (по признаку перпендикулярности прямой и плоскости – BD перпендикулярна двум пересекающимся прямым АО и МА, лежащим в этой плоскости). Следовательно, BD┴МО (по определению прямой, перпендикулярной к плоскости), что и требовалось доказать.

Проверь себя. Перпендикулярные прямые. Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прям
Слайд 16

Проверь себя. Перпендикулярные прямые

Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к третьей прямой. то другая прямая всегда параллельна третьей прямой. то другая прямая никогда не пересекает третью прямую. то другая прямая всегда скрещивается с третьей прямой.

Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если прямая перпендикулярна к одной из двух параллельных прямых, то она всегда лежит в одной плоскости с другой прямой то она п
Слайд 17

Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если прямая перпендикулярна к одной из двух параллельных прямых, то она всегда лежит в одной плоскости с другой прямой то она параллельна с другой прямой. то она скрещивается с другой прямой. то она перпендикулярна и к другой прямой. .

Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если две прямые параллельны третьей прямой, то все три прямые всегда лежат в одной плоскости. то они скрещиваются друг с другом
Слайд 18

Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если две прямые параллельны третьей прямой, то все три прямые всегда лежат в одной плоскости. то они скрещиваются друг с другом. то они параллельны друг другу. то они перпендикулярны друг к другу.

Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если прямая перпендикулярна одной из двух параллельных плоскостей то она принадлежит другой плоскости. то другая плоскость не п
Слайд 19

Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если прямая перпендикулярна одной из двух параллельных плоскостей то она принадлежит другой плоскости. то другая плоскость не перпендикулярна данной прямой. то она перпендикулярна и другой плоскости. то она всегда параллельна другой плоскости.

Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если одна из двух параллельных прямых перпендикулярна к плоскости, то другая прямая не перпендикулярна к этой плоскости. то и д
Слайд 20

Перед Вами записаны предложения, разбитые на две части. Подумайте, какой из вариантов нужно выбрать, чтобы получилось верное предложение. Введите номер выбранного варианта. Если одна из двух параллельных прямых перпендикулярна к плоскости, то другая прямая не перпендикулярна к этой плоскости. то и другая прямая перпендикулярна этой плоскости. то другая прямая параллельна этой плоскости. то другая прямая лежит в этой плоскости.

Перед Вами записаны предложения, понятия и названия теорем. Подумайте, какой из вариантов нужно выбрать, чтобы предложению понятию или теореме соответствовала верная символическая запись. Лемма о перпендикулярных прямых
Слайд 21

Перед Вами записаны предложения, понятия и названия теорем. Подумайте, какой из вариантов нужно выбрать, чтобы предложению понятию или теореме соответствовала верная символическая запись.

Лемма о перпендикулярных прямых

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.
Слайд 22

Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Если прямая перпендикулярна одной из двух параллельных плоскостей, то она перпендикулярна и другой плоскости
Слайд 23

Если прямая перпендикулярна одной из двух параллельных плоскостей, то она перпендикулярна и другой плоскости

Домашнее задание: Л.С.Атанасян и др. Геометрия. Учебник для 10-11 классов средней школы. 1. Упражнение 129 б) Прямая АМ перпендикулярна к плоскости квадрата ABCD, диагонали которого пересекаются в точке О. Докажите, что МО^MD. 2. Упражнение 131 В тетраэдре ABCD точка М – середина ребра ВС, АВ=АС, DB
Слайд 24

Домашнее задание:

Л.С.Атанасян и др. Геометрия. Учебник для 10-11 классов средней школы. 1. Упражнение 129 б) Прямая АМ перпендикулярна к плоскости квадрата ABCD, диагонали которого пересекаются в точке О. Докажите, что МО^MD. 2. Упражнение 131 В тетраэдре ABCD точка М – середина ребра ВС, АВ=АС, DB=DC. Докажите, что плоскость треугольника ADM перпендикулярна к прямой ВС. 3. Упражнение 134 Докажите, что все прямые, проходящие через данную точку М прямой а и перпендикулярные к этой прямой, лежат в плоскости, проходящей через точку М и перпендикулярной прямой а. 4. Упражнение 137 Докажите, что через каждую из двух взаимно перпендикулярных скрещивающихся прямых проходит плоскость, перпендикулярная к другой прямой.

Список похожих презентаций

Аксиомы расположения точек на прямой и плоскости

Аксиомы расположения точек на прямой и плоскости

Выполните действия и сделайте записи:. 1. Изобразите точку С, лежащую на прямой а. 2. Изобразите точку D, не лежащую на этой прямой. 3. Проведите ...
Аксиомы стереометрии и их следствия. Решение задач

Аксиомы стереометрии и их следствия. Решение задач

Цель урока: обобщение и применение аксиом и их следствий к решению задач. Математический диктант. 1). Сформулируйте аксиомы стереометрии: Аксиома ...
Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии и их простейшие следствия

Аксиомы стереометрии. 1)Какова бы ни была плоскость, существуют точки, принадлежащие ей и точки, не принадлежащие ей. 2) Если две плоскости имеют ...
Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Авторские задачи по математике и физике, составленные по повести Н.В. Гоголя «Ночь перед Рождеством

Методологическая основа: Класс арифметических задач огромен. Учащиеся старших классов обычно пытаются решать такие задачи алгебраически, так как владеют ...
Cфера и шар

Cфера и шар

Что такое сфера и шар? геометрическое тело, ограниченное поверхностью, все точки которой находятся на равном расстоянии от центра. Это расстояние ...
«Умножение и деление»

«Умножение и деление»

Цели урока. Обобщение и систематизация знаний, умений и навыков по теме: «Умножение и деление натуральных чисел»; контроль уровня усвоения темы. Развитие ...
«Табличное умножение и деление» Устный счёт

«Табличное умножение и деление» Устный счёт

Решите задачу: Во раз б 9 шт. 3 шт.. 9:3=3 (раза)- во столько раз апельсинов больше, чем яблок. 7∙5=35 (яб.). У резной избушки На лесной опушке Бельчата ...
«Сложение и вычитание десятичных дробей»

«Сложение и вычитание десятичных дробей»

Чтобы сложить (вычесть) десятичные дроби, нужно: 1) уравнять в этих дробях количество знаков после запятой; 2) записать их друг под другом так, чтобы ...
"Функция y = kx², ее свойства и график". 8-й класс

"Функция y = kx², ее свойства и график". 8-й класс

Траектория движения комет в межпланетном пространстве. Архитектурные сооружения. . Траектория движения. Тема урока. Функция у=кх2, ее график и свойства ...
"Умножение и деление чисел"

"Умножение и деление чисел"

Тема урока:. Умножение и Деление чисел. В наше время, чтобы строить И машиной управлять, Помни друг, что надо прочно Математику познать! Математический ...
"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

"Турнир веселых и смекалистых знатоков истории, физики, химии, математики"

Цели мероприятия: 1.Развитие у учащихся интереса к изучаемым предметам. 2.Показать необходимость знаний по математике в других науках. 3.Формирование ...
"Сложение положительных и отрицательных чисел"

"Сложение положительных и отрицательных чисел"

Старостенко Алла Николаевна, учитель математики Предмет: математика, урок-игра, закрепление изученного материала Тема: «Сложение положительных и отрицательных ...
"Сложение и вычитание рациональных чисел"

"Сложение и вычитание рациональных чисел"

I. II. III. IV. Тема: "Сложение и вычитание положительных и отрицательных чисел". Станции: Историческая Биологическая Географическая Математическая. ...
"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

"Нахождение наибольшего и наименьшего значений непрерывной функции на промежутке

1. Найти наибольшее значение функции по её графику на [ -5;6] и [-7; 6]. 5 4 -5 у наиб. = 4 [-5; 6] у наиб. = 5 [-7; 6] 1. 2. Найти наименьшее значение ...
Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения на уроках математики и во внеурочной деятельности

Активные методы обучения — это методы, которые побуждают учащихся к активной мыслительной и практической деятельности в процессе овладения учебным ...
"Комбинаторика и вероятность"

"Комбинаторика и вероятность"

Диктант ******- это раздел математики, посвященный задачам выбора и расположения предметов из различных множеств. Произведение натуральных чисел от ...
"Целые числа и действия с ними". 6-й класс

"Целые числа и действия с ними". 6-й класс

«Сумма двух долгов есть долг». «Сумма имущества и долга равна их разности». (– 3) + (– 5) = – 8 4 + (– 7) = 4 – 7 = – 3. – 8 · (– 2) = 4; – 9 : (– ...
«Сложение положительных и отрицательных чисел».

«Сложение положительных и отрицательных чисел».

. Кемеровская область. Если в картину Сибири всмотреться, На ней обозначены контуры сердца. И бьется оно. И отчизна внимает Рабочему ритму Кузнецкого ...
"Число и цифра 9"

"Число и цифра 9"

Число и цифра 9. Тема урока:. Цель урока:. познакомить с числом 9, обучить написанию цифры 9. Задачи урока:. вспомнить времена года, дни недели, месяцы; ...
«Треугольники и их виды»

«Треугольники и их виды»

Геометрические фигуры. а ж е д с б и з. Треугольники и их виды. Определение треугольника, элементы треугольника Виды треугольников Сумма углов треугольника ...

Конспекты

Астрономия на координатной плоскости

Астрономия на координатной плоскости

Леткова Татьяна Викторовна,. учитель математики. Муниципальное бюджетное общеобразовательное учреждение. «Средняя общеобразовательная школа ...
Векторы на плоскости

Векторы на плоскости

. Конспект. обобщающего урока по теме «Векторы на плоскости». . (геометрия 9 класс). Тема. Систематизация и обобщение изученного материала ...
В мир одночленов и многочленов

В мир одночленов и многочленов

Алгебра 7 класс. Урок – путешествие «В мир одночленов и многочленов». Цели:. обеспечить повторение и систематизацию материала темы; создать ...
Большие и малые числа в химии

Большие и малые числа в химии

МКОУ «Средняя общеобразовательная школва №5. . города Ершова Саратовской области». . Бинарный урок. Большие и малые числа в химии. Провели ...
Буквенные и числовые выражения

Буквенные и числовые выражения

Коммунальное государственное учреждение. «Школа – гимназия № 10» акимата город Рудного. Конспект урока по математикев 5 классе«Буквенные и ...
Арифметический корень натуральной степени и его свойства

Арифметический корень натуральной степени и его свойства

Урок алгебры в 9 классе. . Тема урока. : «Арифметический корень натуральной степени и его свойства». . Из опыта работы учителя математики. ...
Алгебра событий и основные правила вычисления вероятностей

Алгебра событий и основные правила вычисления вероятностей

Закономерности окружающего мира – 7 класс. Тема 9. Алгебра событий и основные правила вычисления вероятностей. урок на тему. Правило сложения ...
Верные и неверные равенства и неравенства

Верные и неверные равенства и неравенства

Муниципальное бюджетное образовательное учреждение. средняя общеобразовательная школа №1. . города Ярцева Смоленской области. . Конспект ...
+ двухзначных и однозначных чисел в пределах 100

+ двухзначных и однозначных чисел в пределах 100

УРОК МАТЕМАТИКИ. Тема:. + двухзначных и однозначных чисел в пределах 100 (урок обобщения). Цель:. Создание условий для формирования УУД при ...
Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии

Тип урока:.   урок обобщения и систематизации знаний. Цель урока:. обобщить, систематизировать и расширить знания, умения и навыки учащихся при ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:28 января 2019
Категория:Математика
Содержит:24 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации