- Первое применение начало термодинамики к экзопроцэссам

Презентация "Первое применение начало термодинамики к экзопроцэссам" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21

Презентацию на тему "Первое применение начало термодинамики к экзопроцэссам" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 21 слайд(ов).

Слайды презентации

Применение первого начала термодинамики к изопроцессам. Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния системы сохраняется постоянным. Лекция 5
Слайд 1

Применение первого начала термодинамики к изопроцессам

Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния системы сохраняется постоянным.

Лекция 5

Изохорный процесс. Диаграмма этого процесса (изохора) в координатах изображается прямой, параллельной оси ординат (см. рис.), где процесс 2-1 есть изохорное нагревание, а 2-3 - изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т.е. Из первого начала термодинам
Слайд 2

Изохорный процесс

Диаграмма этого процесса (изохора) в координатах изображается прямой, параллельной оси ординат (см. рис.), где процесс 2-1 есть изохорное нагревание, а 2-3 - изохорное охлаждение. При изохорном процессе газ не совершает работы над внешними телами, т.е.

Из первого начала термодинамики для изохорного процесса следует, что вся теплота, сообщаемая газу, идет на увеличение его внутренней энергии:

Согласно формуле (53.4)

Тогда для произвольной массы газа получим

(54.1)

Изобарный процесс. Диаграмма этого процесса (изобара) в координатах изображается прямой, параллельной оси. При изобарном процессе работа газа при увеличении объема от до равна. (54.2). и определяется площадью заштрихованного прямоу-гольника (см. рис.). Если использовать уравнение Клапейрона-Менделее
Слайд 3

Изобарный процесс

Диаграмма этого процесса (изобара) в координатах изображается прямой, параллельной оси

При изобарном процессе работа газа при увеличении объема от до равна

(54.2)

и определяется площадью заштрихованного прямоу-гольника (см. рис.). Если использовать уравнение Клапейрона-Менделеева для выбранных двух состояний, то

и , откуда

Из этого выражения вытекает физический смысл молярной газовой постоянной. Если , то для 1 моль газа , т.е. численно равна работе изобарного расширения 1 моль идеального газа при нагревании его на 1 К. Тогда выражение (54.2) для работы изобарного расширения примет вид. (54.3). В изобарном процессе пр
Слайд 4

Из этого выражения вытекает физический смысл молярной газовой постоянной

Если , то для 1 моль газа , т.е.

численно равна работе изобарного расширения 1 моль идеального газа при нагревании его на 1 К.

Тогда выражение (54.2) для работы изобарного расширения примет вид

(54.3)

В изобарном процессе при сообщении газу массой количества теплоты , его внутренняя энергия возрастает на величину

При этом газ совершит работу, определяемую выражением

Так как при внутренняя энергия идеального газа не изменяется: Изотермический процесс. Изотермический процесс описывается законом Бойля-Мариотта: Диаграмма этого процесса (изотерма) в координатах представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше температура, при которой прои
Слайд 5

Так как при внутренняя энергия идеального газа не изменяется:

Изотермический процесс

Изотермический процесс описывается законом Бойля-Мариотта:

Диаграмма этого процесса (изотерма) в координатах представляет собой гиперболу, расположенную на диаграмме тем выше, чем выше температура, при которой происходит процесс.

Исходя из выражений (52.2) и (42.5) найдем работу изотермического расширения газа:

т.е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил: (54.4). Следовательно, для того чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе р
Слайд 6

т.е. все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:

(54.4)

Следовательно, для того чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

то из первого начала термодинамики следует, что для изотермического процесса

Адиабатический и политропный процессы. Адиабатическим называется процесс, при котором отсутствует теплообмен между системой и. окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, процесс распространения звука в среде, так как скорость распространения
Слайд 7

Адиабатический и политропный процессы.

Адиабатическим называется процесс, при котором отсутствует теплообмен между системой и

окружающей средой. К адиабатическим процессам можно отнести все быстропротекающие процессы. Например, процесс распространения звука в среде, так как скорость распространения звуковой волны настолько велика, что обмен энергией между волной и средой произойти не успевает. Адиабатические процессы применяются в ДВС (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т.д.

Из первого начала термодинамики для адиабатического процесса следует, что

(55.1)

т.е. внешняя работа совершается за счет изменения внутренней энергии системы.

Продифференцировав уравнение состояния для идеального газа получим. Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде. (55.2) (55.3). Исключим из (55.2) и (55.3) температуру. Разделив переменные и учитывая, что , найдем
Слайд 8

Продифференцировав уравнение состояния для идеального газа получим

Используя выражения (52.1) и (53.4), для произвольной массы газа перепишем уравнение (55.1) в виде

(55.2) (55.3)

Исключим из (55.2) и (55.3) температуру

Разделив переменные и учитывая, что ,

найдем

Интегрируя это уравнение в пределах от до и соответственно от до , а затем потенцируя, придем к выражению. или. Так как состояния 1 и 2 выбраны произвольно, то можно записать. (55.4). Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.
Слайд 9

Интегрируя это уравнение в пределах от до и соответственно от до , а затем потенцируя, придем к выражению

или

Так как состояния 1 и 2 выбраны произвольно, то можно записать

(55.4)

Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.

Для перехода к переменным или исключим из (55.4) с помощью уравнения Клапейрона-Менделеева соответственно давление или объем: (55.5) (55.6). Выражения (55.4)-(55.6) представляют собой уравнения адиабатического процесса. В этих уравнениях безразмерная величина. (55.7). называется показателем адиабаты
Слайд 10

Для перехода к переменным или исключим из (55.4) с помощью уравнения Клапейрона-Менделеева соответственно давление или объем:

(55.5) (55.6)

Выражения (55.4)-(55.6) представляют собой уравнения адиабатического процесса. В этих уравнениях безразмерная величина

(55.7)

называется показателем адиабаты (или коэффициентом Пуассона).

Значения , вычисленные по формуле (55.7), хорошо подтверждаются экспериментом. Для одноатомных газов ( и др.), достаточно хорошо удовлетворяющих условию идеальности, и. Для двухатомных газов ( и др.), и. Диаграмма адиабатического процесса (адиабата) в координатах изображается гиперболой (см. рис.).
Слайд 11

Значения , вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.

Для одноатомных газов ( и др.), достаточно хорошо удовлетворяющих условию идеальности, и

Для двухатомных газов ( и др.), и

Диаграмма адиабатического процесса (адиабата) в координатах изображается гиперболой (см. рис.). На рисунке видно, что адиабата более крута, чем изотерма

Это объясняется тем, что при адиабатическом сжатии 1-3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

Вычислим работу, совершаемую газом в адиаба-тическом процессе. Запишем уравнение (55.1) в виде. Если газ адиабатически расширяется от объема до то его температура уменьшается от до и работа расширения идеального газа. (55.8). Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) д
Слайд 12

Вычислим работу, совершаемую газом в адиаба-тическом процессе. Запишем уравнение (55.1) в виде

Если газ адиабатически расширяется от объема до то его температура уменьшается от до и работа расширения идеального газа

(55.8)

Применяя те же приемы, что и при выводе формулы (55.5), выражение (55.8) для работы при адиабатичес-ком расширении можно преобразовать к виду

где

Работа, совершаемая газом при адиабатическом расширении 1-2 (определяется площадью, заштрихованной на рис.), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом – температура поддерживается постоянной за счет
Слайд 13

Работа, совершаемая газом при адиабатическом расширении 1-2 (определяется площадью, заштрихованной на рис.), меньше, чем при изотермическом. Это объясняется тем, что при адиабатическом расширении происходит охлаждение газа, тогда как при изотермическом – температура поддерживается постоянной за счет притока извне эквивалентного количества теплоты.

Рассмотренные изохорный, изобарный, изотермический и адиабатический процессы имеют общую особенность - они происходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны и , в изотермическом процессе ( ) теплоемкость равна в адиабатическом ( ) теплоемкость равна ну
Слайд 14

Рассмотренные изохорный, изобарный, изотермический и адиабатический процессы имеют общую особенность - они происходят при постоянной теплоемкости. В первых двух процессах теплоемкости соответственно равны и , в изотермическом процессе ( ) теплоемкость равна в адиабатическом ( ) теплоемкость равна нулю.

Процесс, в котором теплоемкость остается постоянной, называется политропным.

(55.9). где - показатель политропы. Очевидно, что при. - уравнение адиабаты (см. (55.9)); - уравнение изотермы; - уравнение изобары; - уравнение изохоры. Таким образом, все рассмотренные процессы являются частными случаями политропного процесса. Исходя из первого начала термодинамики при условии пос
Слайд 15

(55.9)

где - показатель политропы.

Очевидно, что при

- уравнение адиабаты (см. (55.9));

- уравнение изотермы;

- уравнение изобары;

- уравнение изохоры.

Таким образом, все рассмотренные процессы являются частными случаями политропного процесса.

Исходя из первого начала термодинамики при условии постоянства теплоемкости ( ) можно вывести уравнение политропы:

Круговой процесс (цикл). Обратимые и необратимые процессы. Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме процессов цикл изображается замкнутой кривой (см. рис.). Цикл, совершаемый идеальным газом, можно разб
Слайд 16

Круговой процесс (цикл). Обратимые и необратимые процессы.

Круговым процессом (или циклом) называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме процессов цикл изображается замкнутой кривой (см. рис.). Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1-2) и сжатия (2-1) газа.

Работа расширения (определяется площадью фигуры ) положительна ( ), работа сжатия (определяется площадью фигуры ) отрицательна ( ). Следовательно, работа, совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой. Если за цикл совершается положительная работа. (цикл протекает п
Слайд 17

Работа расширения (определяется площадью фигуры ) положительна ( ), работа сжатия (определяется площадью фигуры ) отрицательна ( ).

Следовательно, работа, совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой.

Если за цикл совершается положительная работа

(цикл протекает по часовой стрелке), то он называется прямым (рис. а), если за цикл совершается отрицатель-ная работа

(цикл протекает против часо-вой стрелки), то он назы-вается обратным (рис. б).

Прямой цикл используется в тепловых двигателях – периодически действующих установках, совершающих работу за счет получения извне теплоты. Обратный цикл используется в холодильных машинах периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высо
Слайд 18

Прямой цикл используется в тепловых двигателях – периодически действующих установках, совершающих работу за счет получения извне теплоты. Обратный цикл используется в холодильных машинах периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии газа равно нулю. Поэтому первое начало термодинамики (51.1) для кругового процесса

(56.1)

т.е. работа, совершаемая за цикл, равна количеству полученной извне теплоты. Однако в результате кругового процесса система может теплоту, как получать, так и отдавать, поэтому , где. - количество теплоты, полученное системой, - количество теплоты, отданное системой. Поэтому термический коэффициент
Слайд 19

т.е. работа, совершаемая за цикл, равна количеству полученной извне теплоты. Однако в результате кругового процесса система может теплоту, как получать, так и отдавать, поэтому , где

- количество теплоты, полученное системой,

- количество теплоты, отданное системой.

Поэтому термический коэффициент полезного действия для кругового процесса

(56.2)

Термический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении. Причем, если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит ник
Слайд 20

Термический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении. Причем, если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений. Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происхо-дящего в системе, следует из того, что ее любое промежуточное состояние есть состояние термодинамического равновесия; для него "безразлично", идет процесс в прямом или обратном направлении.

Реальные процессы сопровождаются диссипацией энергии (из-за трения, теплопроводности и т.д.). Обратимые процессы - это идеализация реальных процессов. Их рассмотрение важно по двум причинам: многие процессы в природе и технике практически обратимы; обратимые процессы являются наиболее экономичными;
Слайд 21

Реальные процессы сопровождаются диссипацией энергии (из-за трения, теплопроводности и т.д.). Обратимые процессы - это идеализация реальных процессов. Их рассмотрение важно по двум причинам: многие процессы в природе и технике практически обратимы; обратимые процессы являются наиболее экономичными; Они имеют максимальный термический коэффициент полезного действия, что позволяет указать пути повышения кпд реальных тепловых двигателей.

Список похожих презентаций

Первое начало термодинамики

Первое начало термодинамики

Вечный двигатель - воображаемое устройство, способное бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Одна из древнейших ...
14 2-е начало термодинамики

14 2-е начало термодинамики

Изменение внутренней энергии рабочего тела за цикл равно нулю потому, что тело возвращается в исходное состояние. Следовательно, вся полученная теплота ...
Применение первого закона термодинамики

Применение первого закона термодинамики

1. Два принципа первого закона термодинамики. Первый закон термодинамики является частным случаем всеобщего закона о превращении и сохранении энергии ...
Применение первого закона термодинамики к различным процессам

Применение первого закона термодинамики к различным процессам

Науки юношей питают, Отраду старым подают, В счастливой жизни украшают, В несчастный случай берегут…. М. В. Ломоносов. ∆U=A+Q. Изменение внутренней ...
13 1-е начало термодинамики, теплоемкость, работа

13 1-е начало термодинамики, теплоемкость, работа

Напомним: Функцией состояния. Так как все определяется изменением (производной) энергии, а энергия взаимодействия электронов внутренних оболочек с ...
Применение первого закона термодинамики к изопроцессам

Применение первого закона термодинамики к изопроцессам

Внутренняя энергия газа зависит от температуры газа. Газ может совершать работу при любых происходящих с ним процессах. При изобарном расширении газ ...
Второе начало термодинамики

Второе начало термодинамики

Используя понятие энтропии и неравенство Клаузиуса, второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы ...
Первый закон термодинамики

Первый закон термодинамики

Что надо выяснить:. Выполнение закона сохранения энергии в тепловых процессах. Как применить закон сохранения энергии к изопроцессам. Что такое адиабатный ...
Первый закон термодинамики

Первый закон термодинамики

Изменение потенциальной энергии системы равно работе, совершаемой над системой при перемещении ее из одного места силового поля в другое. Внутренняя ...
I закон термодинамики

I закон термодинамики

Закон сохранения энергии. Энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы ...
Второй закон термодинамики

Второй закон термодинамики

Обратимый процесс. Это процесс, который может происходить как в прямом, так и в обратном направлении Обратимый процесс – это идеализация реального ...
Электродвигатели и их применение

Электродвигатели и их применение

Электрический двигатель -это (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую, побочным эффектом ...
Теоретические основы ИК-спектроскопии и применение в фармации

Теоретические основы ИК-спектроскопии и применение в фармации

План лекции: Теоретические основы метода. ИК-спектр. Аппаратура ИК–спектроскопии. Применение в фармации. Теоретические основы метода Явление взаимодействия ...
применение магнитов

применение магнитов

Что же такое магнит? – это объект, сделанный из определенного материала,. Магнит. который создает магнитное поле. Каждый магнит имеет, по крайней ...
Законы термодинамики

Законы термодинамики

НУЛЕВОЕ НАЧАЛО ТЕРМОДИНАМИКИ. Нулевое начало термодинамики сформулированное всего около 50 лет назад , по существу представляет собой полученное «задним ...
Законы термодинамики

Законы термодинамики

Первый закон термодинамики постулирует существование внутренней энергии – некоторой функции состояния[1] , такой, что если к системе подводится тепло ...
Закон отражения и его применение

Закон отражения и его применение

Как возникает такая красота ! Закон отражения света:. Угол падения равен углу отражения. 2. Луч падающей волны, луч отраженной волны и перпендикуляр ...
Закон Кулона и его применение

Закон Кулона и его применение

Как называется раздел физики, изучающий неподвижные заряженные тела? Электростатика Какое взаимодействие существует между заряженными телами, частицами? ...
Второй закон термодинамики

Второй закон термодинамики

1. Два положения второго закона термодинамики. Различные формы передачи энергии неравноценны. Энергия теплового движения стремиться в большей степени, ...
Второй закон термодинамики

Второй закон термодинамики

Цель занятия: знать второй закон термодинамики, принцип работы теплового двигателя. Уметь приводить примеры тепловых двигателей и определять КПД. ...

Конспекты

Первое начало термодинамики

Первое начало термодинамики

. Урок разработала:.   Свириденко Ольга Владимировна – учитель физики МОУ «СОШ р.п. Красный Текстильщик Саратовского района Саратовской области». ...
Электромагниты, их свойства и применение

Электромагниты, их свойства и применение

Урок по теме: Электромагниты, их свойства и применение. План-конспект урока. Цель урока. : актуализировать знания  . об устройстве и принципе ...
Электромагниты, их свойства и применение

Электромагниты, их свойства и применение

Электромагниты, их свойства и применение. Конспект деловой игры для 8 класса. Ц е л ь у р о к а: Продолжить развитие навыков самостоятельной работы ...
Электрическое поле и ее применение в конденсаторах

Электрическое поле и ее применение в конденсаторах

Повторительно- обобщающий урок. (Лабораторная работа). Тема: «Электрическое поле и ее применение в конденсаторах». . Цель и задача урока:. Обобщить ...
Самостоятельный разряд в газах. Различные типы самостоятельного разряда и их применение

Самостоятельный разряд в газах. Различные типы самостоятельного разряда и их применение

Схема проведения урока. Физика 10 класс. Учитель физики. МОУ СОШ № 9. Ст. Расшеватской. Новоалександровского района. Ставропольского края. ...
Решение задач на применение формулы тонкой линзы

Решение задач на применение формулы тонкой линзы

МОУ СОШ №25. С углубленным изучением отдельных предметов. Муниципальный округ Орехово-Зуево. Открытый урок по физике. КЛАСС: 11А. ТЕМА: ...
Решение задач на применение законов Ньютона

Решение задач на применение законов Ньютона

План-конспект урока. ТЕМА 2. Динамика. ЗАКОНЫ ДВИЖЕНИЯ НЬЮТОНА. УРОК № 5. . Решение задач на применение законов Ньютона. ТИП УРОКА:. комбинированный. ...
Решение задач на применение законов Ньютона

Решение задач на применение законов Ньютона

Урок физики в 10 классе по теме: (слайд №1). «Решение задач на применение. законов Ньютона». Цель урока:. Систематизация знаний о законах Ньютона. ...
Разработка и применение комплекса дистанционных веб-ресурсов по физике

Разработка и применение комплекса дистанционных веб-ресурсов по физике

. Разработка и применение комплекса. дистанционных веб-ресурсов по физике. Львовский Марк Бениаминович, канд. техн. наук, учитель физики высшей ...
Практическое применение законов постоянного тока

Практическое применение законов постоянного тока

Урок по физике. «Практическое применение законов постоянного тока». Общеобразовательная программа.9класс. Учитель: Бражникова Татьяна ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:2 мая 2019
Категория:Физика
Содержит:21 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации