- Законы термодинамики

Презентация "Законы термодинамики" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10

Презентацию на тему "Законы термодинамики" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 10 слайд(ов).

Слайды презентации

Законы термодинамики. МОУ Гимназии №26. Выполнил: Селивнов М., Турсунова И., Кожухова В. учащиеся 10-В класса Руководитель: Пылкова Любовь Васильевна, учитель физики. 2007\ 2008 учебный год
Слайд 1

Законы термодинамики

МОУ Гимназии №26

Выполнил: Селивнов М., Турсунова И., Кожухова В. учащиеся 10-В класса Руководитель: Пылкова Любовь Васильевна, учитель физики

2007\ 2008 учебный год

НУЛЕВОЕ НАЧАЛО ТЕРМОДИНАМИКИ. Нулевое начало термодинамики сформулированное всего около 50 лет назад , по существу представляет собой полученное «задним числом» логическое оправдание для введения понятия температуры физических тел . Температура - одно из самых глубоких понятий термодинамики . Темпер
Слайд 2

НУЛЕВОЕ НАЧАЛО ТЕРМОДИНАМИКИ

Нулевое начало термодинамики сформулированное всего около 50 лет назад , по существу представляет собой полученное «задним числом» логическое оправдание для введения понятия температуры физических тел . Температура - одно из самых глубоких понятий термодинамики . Температура играет столь же важную роль в термодинамике , как , например процессы. Впервые центральное место в физике занял совершенно абстрактное понятие ; оно пришло на смену введенному еще во времена Ньютона ( 17 век) понятию силы - на первый взгляд более конкретному и «осязаемому» и к тому же успешно « математезированному» Ньютоном.

Первое закон термодинамики. Первый закон термодинамика – это закон сохранения энергии, распространенный на тепловые явления. Он показывает, от каких причин зависит изменение внутренней энергии. Этот великий закон прост: U = A+Q Часто вместо работы А внешних тел над системой рассматривают работу А`
Слайд 3

Первое закон термодинамики

Первый закон термодинамика – это закон сохранения энергии, распространенный на тепловые явления. Он показывает, от каких причин зависит изменение внутренней энергии. Этот великий закон прост: U = A+Q Часто вместо работы А внешних тел над системой рассматривают работу А` системы над внешними телами. Учитываю, что А`= -А, первый закон термодинамики в в форме U = A+Q можно переписать так: Q=U+A` Суть первого закона в утверждении: изменение так определенной энергии не зависит от процесса и определяется только начальным и конечным состояниями системы. Это означает, что внутренняя энергия – однозначная функция состояние системы и в замкнутой системе сохраняется.

Невозможность создания вечного двигателя. Задолго до открытия закона сохранения энергии Французская Академия наук приняла в 1775г. Решение не рассматривать проектов вечных двигателей первого рода. Под вечным двигателем первого рода понимают устройство, которое могло бы совершать неограниченное колич
Слайд 4

Невозможность создания вечного двигателя

Задолго до открытия закона сохранения энергии Французская Академия наук приняла в 1775г. Решение не рассматривать проектов вечных двигателей первого рода. Под вечным двигателем первого рода понимают устройство, которое могло бы совершать неограниченное количество работы без затраты топлива или каких-либо других материалов. Вечные двигатели обычно конструируют на основе использования следующих приёмов или их комбинаций: 1) Подъем воды с помощью архимедова винта; 2) Подъем воды с помощью капилляров; 3) Использование колеса с неуравновешивающимися грузами; 4) Природные магниты; 5) Электромагнетизм; 6) Пар или сжатый воздух.

Применение I закона к изопроцессам. 1) T=const – изотермический T=0 Q=A’ U=0 2) P=const – изобарный Q= U+A 3) V=const - изохорный V=0 A=0 U=Q 4)Q=const–адиабатный U=A =-A`. Процессы в природе имеют определенную направленность, никак не отраженную в первом законе термодинамики. Все процессы в
Слайд 5

Применение I закона к изопроцессам

1) T=const – изотермический T=0 Q=A’ U=0 2) P=const – изобарный Q= U+A 3) V=const - изохорный V=0 A=0 U=Q 4)Q=const–адиабатный U=A =-A`

Процессы в природе имеют определенную направленность, никак не отраженную в первом законе термодинамики. Все процессы в природе протекают только в одном определенном направлении. В обратном направлении самопроизвольно они протекать не могут. Все процессы в природе необратимы, и самые трагические из них – старение и смерть организмов.

Второй закон термодинамики. Второй закон термодинамики указывает направление возможных энергетических превращений и тем самым выражает необратимость процессов в природе. Он был установлен путем непосредственного обобщения опытных фактов. Немецкий ученный Р. Клаузиус сформулировал этот закон так: нев
Слайд 6

Второй закон термодинамики

Второй закон термодинамики указывает направление возможных энергетических превращений и тем самым выражает необратимость процессов в природе. Он был установлен путем непосредственного обобщения опытных фактов. Немецкий ученный Р. Клаузиус сформулировал этот закон так: невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах. Другая формулировка принадлежит английскому ученому У. Кельвину: невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника. Согласно 2 началу все процессы природы идут в оду сторону, к увеличению беспорядка, уменьшению энергии, а при “полном беспорядке” – напишет Клаузиус – наступит всеобщая смерть – всякое движение прекратится. Это грустный прогноз вызвал бурю возражений.

И Людвиг Больцман выдвинул спасительную теорию, что Вселенную необходимо рассматривать в целом, поскольку процессы, происходящие в различных удаленных ее частях текут независимо друг от друга, а иногда и в разных направлениях. В одной части может происходить угасание, а в другой – всплеск, выделение
Слайд 7

И Людвиг Больцман выдвинул спасительную теорию, что Вселенную необходимо рассматривать в целом, поскольку процессы, происходящие в различных удаленных ее частях текут независимо друг от друга, а иногда и в разных направлениях. В одной части может происходить угасание, а в другой – всплеск, выделение энергии. Строгий анализ показывает, что II закон выполняется для замкнутых и равновесных систем. Вселенную нельзя рассматривать как равновесную систему, бурные процессы на близких и далеких звездах свидетельствуют о том, что до равновесного состояние им еще очень далеко, и третье начало постулирует, что никогда, ни при каких условиях не может быть достигнут абсолютный нуль температур, хотя близкое приближение к нему допустимо.

Второй закон термодинамики постулирует существование функции состояния , называемой «энтропией» ( что означает от греческого «эволюция» ) и обладающей следующими свойствами : 1) Энтропия системы является экстенсивным свойством . Если система состоит из нескольких частей , то полная энтропия системы
Слайд 8

Второй закон термодинамики постулирует существование функции состояния , называемой «энтропией» ( что означает от греческого «эволюция» ) и обладающей следующими свойствами : 1) Энтропия системы является экстенсивным свойством . Если система состоит из нескольких частей , то полная энтропия системы равна сумме энтропии каждой части . Изменение энтропии S состоит из двух частей . Обозначим через S поток энтропии, обусловленный взаимодействием с окружающей средой , а через S - часть энтропии , обусловленную изменениями внутри системы , имеем S = S1 + S2 Приращение энтропии S обусловленное изменением внутри системы, никогда не имеет отрицательное значение . Величина S = 0 , только тогда , когда система претерпевает обратимые изменения , но она всегда положительна , если в системе идут такие же необратимые процессы. Таким образом: S = 0 ( обратимые процессы ); S > 0( необратимые процессы ); Для изолированной системы поток энтропии равен нулю и выражения обратимого процесса и необратимого процесса сводятся к следующему виду : S1 = S > 0 ( изолированная система ).

Третий закон термодинамики. Открытие третьего начала термодинамики связано с нахождением химического средства - величины , характеризующих способность различных веществ химически реагировать друг с другом. Эта величина определяется работой A химических сил при реакции . Первое и второе начало термод
Слайд 9

Третий закон термодинамики

Открытие третьего начала термодинамики связано с нахождением химического средства - величины , характеризующих способность различных веществ химически реагировать друг с другом. Эта величина определяется работой A химических сил при реакции . Первое и второе начало термодинамики позволяют вычислить химическое средство W только с точностью до некоторой неопределенной функции . Чтобы определить эту функцию нужны в дополнении к обоим началам термодинамики новые опытные данные о свойствах тел .

Поэтому Нернстоном были предприняты широкие экспериментальные исследования поведение веществ при низкой температуре. В результате этих исследований и было сформулировано третье начало термодинамики : по мере приближения температуры к 0 К энтропия всякой равновесной системы при изотермических процесс
Слайд 10

Поэтому Нернстоном были предприняты широкие экспериментальные исследования поведение веществ при низкой температуре. В результате этих исследований и было сформулировано третье начало термодинамики : по мере приближения температуры к 0 К энтропия всякой равновесной системы при изотермических процессах перестает зависить от каких-либо термодинамических параметров состояния и в пределе (Т= 0 К) принимает одну и туже для всех систем универсальную постоянную величину , которую можно принять равной нулю.

Список похожих презентаций

Законы термодинамики в геологических процессах

Законы термодинамики в геологических процессах

Внутренняя энергия. 1. Согласно первому закону термодинамики, все системы, находящиеся в одном и том же состоянии, имеют одну и ту же внутреннюю энергию, ...
Законы термодинамики

Законы термодинамики

Первый закон термодинамики постулирует существование внутренней энергии – некоторой функции состояния[1] , такой, что если к системе подводится тепло ...
Отражение света. Законы отражения света

Отражение света. Законы отражения света

Фронтальный опрос. В чём состоит сущность закона прямолинейного распространения света? Приведите примеры источников света. При каких условиях от предмета ...
Первый закон термодинамики

Первый закон термодинамики

Изменение потенциальной энергии системы равно работе, совершаемой над системой при перемещении ее из одного места силового поля в другое. Внутренняя ...
14 2-е начало термодинамики

14 2-е начало термодинамики

Изменение внутренней энергии рабочего тела за цикл равно нулю потому, что тело возвращается в исходное состояние. Следовательно, вся полученная теплота ...
Основы термодинамики

Основы термодинамики

56 III ТЕРМОДИНАМИКА ТЕМА 5 Основы термодинамики. 1-ый закон ТД для изобарического процесса. 57 III ТЕРМОДИНАМИКА ТЕМА 5 Основы термодинамики. Исследование ...
Законы распространения света

Законы распространения света

Тема урока: «Отражение и преломление света». Закон отражения света:. Падающий луч Отражённый луч Перпендикуляр Угол падения Угол отражения. Граница ...
Законы сохранения в механике

Законы сохранения в механике

Импульс тела. Импульс тела - векторная величина равная произведению массы тела на его скорость. P=m v P (кг м /с). Примеры реактивного движения: полет ...
Второй закон термодинамики

Второй закон термодинамики

1. Два положения второго закона термодинамики. Различные формы передачи энергии неравноценны. Энергия теплового движения стремиться в большей степени, ...
Фотоэффект. Законы фотоэффекта

Фотоэффект. Законы фотоэффекта

Завершение классической физики. В конце XIX в. многие ученые считали, что развитие физики завершилось по следующим причинам: 1. Больше 200 лет существуют ...
Второй закон термодинамики

Второй закон термодинамики

Обратимый процесс. Это процесс, который может происходить как в прямом, так и в обратном направлении Обратимый процесс – это идеализация реального ...
Второй закон термодинамики

Второй закон термодинамики

Цель занятия: знать второй закон термодинамики, принцип работы теплового двигателя. Уметь приводить примеры тепловых двигателей и определять КПД. ...
Второй закон термодинамики

Второй закон термодинамики

Энергия и энтропия являются неотъемлемыми свойствами материи, причем энергия есть мера движения материи, а энтропия – мера рассеивания (деградации) ...
Второе начало термодинамики

Второе начало термодинамики

Используя понятие энтропии и неравенство Клаузиуса, второе начало термодинамики можно сформулировать как закон возрастания энтропии замкнутой системы ...
I закон термодинамики

I закон термодинамики

Закон сохранения энергии. Энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы ...
Первый закон термодинамики

Первый закон термодинамики

Изучить закон сохранения энергии, распространённый на тепловые явления – первый закон термодинамики. Рассмотреть изопроцессы в газах с энергетической ...
Динамика материальной точки. Законы Ньютона

Динамика материальной точки. Законы Ньютона

Движение свободных тел определяет первый закон Ньютона: Существуют системы отсчета, относительно которых движение всех свободных тел является равномерным ...
Применение первого закона термодинамики к изопроцессам

Применение первого закона термодинамики к изопроцессам

Внутренняя энергия газа зависит от температуры газа. Газ может совершать работу при любых происходящих с ним процессах. При изобарном расширении газ ...
Законы волновой оптики

Законы волновой оптики

Волновая оптика Развитие представлений о природе света Первые представления о природе света возникли у древних греков и египтян. По мере изобретения ...
Законы преломления

Законы преломления

Преломление света Примеры явления . При переходе из одной среды в другую световые лучи меняют свое направление. Наблюдается кажущееся изменение размеров ...

Конспекты

Законы термодинамики

Законы термодинамики

Урок рок физики по теме " Законы термодинамики". . Познавательные цели и задачи урока. Повторить и закрепить понятия: внутренняя энергия, тепловое ...
Первый закон термодинамики

Первый закон термодинамики

Урок по теме «Первый закон термодинамики». 10 класс. Цели урока:. . образовательные:. ввести первый закон термодинамики как закон сохранения ...
Отражение света. Законы отражения. Плоское зеркало

Отражение света. Законы отражения. Плоское зеркало

Урок по физике в 8 классе. «Отражение света. Законы отражения. Плоское зеркало». . ЦЕЛИ УРОКА. :. 1.ОБРАЗОВАТЕЛЬНА. Я – способствовать формированию ...
Корпускулярно-волновой дуализм. Гипотеза де Бройля о волновых свойствах частиц. Соотношение неопределённостей Гейзенберга. Законы отражения и преломления света; поляризация, дисперсия света

Корпускулярно-волновой дуализм. Гипотеза де Бройля о волновых свойствах частиц. Соотношение неопределённостей Гейзенберга. Законы отражения и преломления света; поляризация, дисперсия света

Урок № 56-169 Корпускулярно-волновой дуализм. Гипотеза де Бройля о волновых свойствах частиц. Соотношение неопределённостей Гейзенберга. Законы отражения ...
Импульс. Энергия. Законы сохранения

Импульс. Энергия. Законы сохранения

Калачёвский муниципальный район, Волгоградской области. МОУ «Октябрьский лицей». Физика. Урок обобщения и закрепления знаний. Тема ...
Законы сохранения импульса и энергии

Законы сохранения импульса и энергии

МОУ Каргинская средняя общеобразовательная школа. Конспект урока по теме:. «Законы сохранения импульса и энергии ». ( 10 класс). ...
Законы сохранения в механике

Законы сохранения в механике

. Тема урока:. Обобщающее повторение по теме: «Законы сохранения в механике». Цель урока:. Углубить, закрепить и обобщить знания; контроль за ...
Законы распространения света

Законы распространения света

Тема:. Законы распространения света. Цель. :. формирование навыков практического применения законов прямолинейного распространения и отражения ...
Законы Ньютона и закон всемирного тяготения в стихах

Законы Ньютона и закон всемирного тяготения в стихах

7. . Открытый урок по физике в 9 классе. Учитель Хвастов Г. В. . . Тема «Законы Ньютона и закон всемирного тяготения в стихах. И опыт-сын ошибок ...
Законы Ньютона

Законы Ньютона

Урок по физике 9 класс «Законы Ньютона» (повторение). Цель урока. :. создать условия для обобщения и закрепления знаний, полученных по теме ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:15 января 2015
Категория:Физика
Содержит:10 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации