- Динамика материальной точки. Законы Ньютона

Презентация "Динамика материальной точки. Законы Ньютона" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10

Презентацию на тему "Динамика материальной точки. Законы Ньютона" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 10 слайд(ов).

Слайды презентации

Динамика материальной точки. Законы Ньютона. Динамика – раздел механики, в котором рассматриваются основные законы, определяющие движение тел. Классическая динамика базируется на трех законах Ньютона, которые следует рассматривать не как изолированные утверждения, а как систему взаимосвязанных посту
Слайд 1

Динамика материальной точки. Законы Ньютона

Динамика – раздел механики, в котором рассматриваются основные законы, определяющие движение тел. Классическая динамика базируется на трех законах Ньютона, которые следует рассматривать не как изолированные утверждения, а как систему взаимосвязанных постулатов. Эти законы, хотя они и не являются логическим следствием опытных фактов, тем не менее можно рассматривать как обобщение данных многочисленных наблюдений за движением макроскопических тел.

Движение свободных тел определяет первый закон Ньютона: Существуют системы отсчета, относительно которых движение всех свободных тел является равномерным и прямолинейным. Такие системы отсчета называются инерциальными. Подчеркнем, что речь идет о системах отсчета, относительно которых все свободные
Слайд 2

Движение свободных тел определяет первый закон Ньютона: Существуют системы отсчета, относительно которых движение всех свободных тел является равномерным и прямолинейным. Такие системы отсчета называются инерциальными. Подчеркнем, что речь идет о системах отсчета, относительно которых все свободные тела движутся равномерно и прямолинейно. Для одного данного тела независимо от того, является оно свободным или нет, всегда можно указать систему отсчета, относительно которой оно движется равномерно и прямолинейно, например систему, связанную с самим этим телом. Но существование системы отсчета, относительно которой прямолинейно и равномерно движение нескольких различных тел отнюдь не является в общем случае обязательным.

Если тело не является свободным, его движение определяется воздействием на тело других тел и создаваемых ими полей. В ньютоновской механике принимается, что количественно такое воздействие может быть описано с помощью векторной величины, которая называется силой. Природа и происхождение сил в механи
Слайд 3

Если тело не является свободным, его движение определяется воздействием на тело других тел и создаваемых ими полей. В ньютоновской механике принимается, что количественно такое воздействие может быть описано с помощью векторной величины, которая называется силой. Природа и происхождение сил в механике не изучается, это задача физики в целом.

В настоящее время известны четыре основных вида сил – гравитационные, электромагнитные, сильные и слабые. Два последних вида сил (сильные и слабые) действуют между атомными ядрами и элементарными частицами и проявляются только на очень коротких расстояниях. Гравитационные силы описываются в рамках к
Слайд 4

В настоящее время известны четыре основных вида сил – гравитационные, электромагнитные, сильные и слабые. Два последних вида сил (сильные и слабые) действуют между атомными ядрами и элементарными частицами и проявляются только на очень коротких расстояниях. Гравитационные силы описываются в рамках классической механики законом всемирного притяжения: два любых тела (материальные точки) притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними: (1.16) (Сила гравитационного притяжения направлена по прямой, соединяющей материальные точки.)

Движение тела под действием силы определяется вторым законом Ньютона: в инерциальной системе отсчета ускорение тела прямо пропорционально приложенной силе: . (1.17) Так как сила и ускорение векторные величины, из второго закона Ньютона в частности следует, что направление ускорения совпадает с напра
Слайд 5

Движение тела под действием силы определяется вторым законом Ньютона: в инерциальной системе отсчета ускорение тела прямо пропорционально приложенной силе: . (1.17) Так как сила и ускорение векторные величины, из второго закона Ньютона в частности следует, что направление ускорения совпадает с направлением силы. Коэффициент пропорциональности в (1.17) (он ставится в этой формуле перед ускорением) есть характеристика тела, которая называется инертной массой или просто массой тела, т.е.: .

В системе СИ масса измеряется в килограммах (кг), а сила в ньютонах (Н) (1 Н=1 кг·м/с2). Поскольку ускорение тела есть производная по времени от его скорости , а массу как постоянный коэффициент можно внести под знак производной, можно записать второй закон Ньютона в виде (1.19) Или, вводя векторную
Слайд 6

В системе СИ масса измеряется в килограммах (кг), а сила в ньютонах (Н) (1 Н=1 кг·м/с2). Поскольку ускорение тела есть производная по времени от его скорости , а массу как постоянный коэффициент можно внести под знак производной, можно записать второй закон Ньютона в виде (1.19) Или, вводя векторную величину (1.20) называемую импульсом тела, в виде

При расчете силы действующей на тело часто используется принцип независимости действия сил. Суть его в следующем. Предположим, есть n источников силы (тел или силовых полей), каждый из которых действует на рассматриваемую материальную точку с силой , i = 1,2, … n, когда все остальные источники удале
Слайд 7

При расчете силы действующей на тело часто используется принцип независимости действия сил. Суть его в следующем. Предположим, есть n источников силы (тел или силовых полей), каждый из которых действует на рассматриваемую материальную точку с силой , i = 1,2, … n, когда все остальные источники удалены. Тогда, как показывает опыт, в большинстве случаев сила, действующая на тело, когда все n источников действуют одновременно, равна геометрической (векторной) сумме сил : .

Пусть - сила, действующая на одну материальную точку со стороны второй материальной точки, а - сила, действующая на вторую точку со стороны первой. Тогда (1.23) Это утверждение является третьим законом Ньютона: тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными
Слайд 8

Пусть - сила, действующая на одну материальную точку со стороны второй материальной точки, а - сила, действующая на вторую точку со стороны первой. Тогда (1.23) Это утверждение является третьим законом Ньютона: тела действуют друг на друга с силами, направленными вдоль одной и той же прямой, равными по абсолютному значению и противоположными по направлению.

Используя законы Ньютона можно по заданному движению тела найти действующую на него силу. Для этого нужно записать закон движения тела в инерциальной системе отсчета, вычислить ускорение и из второго закона Ньютона (1.18) определить действующую силу. Более сложной является задача другого типа – по з
Слайд 9

Используя законы Ньютона можно по заданному движению тела найти действующую на него силу. Для этого нужно записать закон движения тела в инерциальной системе отсчета, вычислить ускорение и из второго закона Ньютона (1.18) определить действующую силу. Более сложной является задача другого типа – по заданной силе определить движение тела.

Если тело находится в равновесии (неподвижно) относительно некоторой инерциальной системы отсчета, то его скорость, а значит и ускорение равны нулю. Согласно второму закону Ньютона это может быть только тогда, когда равнодействующая всех приложенных к телу сил равна нулю. Таким образом, мы получаем
Слайд 10

Если тело находится в равновесии (неподвижно) относительно некоторой инерциальной системы отсчета, то его скорость, а значит и ускорение равны нулю. Согласно второму закону Ньютона это может быть только тогда, когда равнодействующая всех приложенных к телу сил равна нулю. Таким образом, мы получаем необходимое условие равновесия: если тело находится в равновесии, то геометрическая сумма всех приложенных к телу сил равна нулю. Это условие позволяет решать некоторые задачи статики.

Список похожих презентаций

Динамика материальной точки

Динамика материальной точки

Динамика до Ньютона. Учение Аристотеля. В 335 г. до н. э. отец-основатель физики Аристотель создал собственную научную школу-Ликей,-которой руководил ...
Законы Ньютона.

Законы Ньютона.

Суть закона инерции по Галилео Галилею:. При отсутствии внешних воздействий тело может не только покоиться, но и двигаться прямолинейно и равномерно. ...
Законы Ньютона. Инерциальные системы отсчёта

Законы Ньютона. Инерциальные системы отсчёта

Суть законов инерции впервые была изложена в одной из книг итальянского ученого Галилео Галилея, опубликованная в начале 17 века. До этого на протяжении ...
Законы Ньютона

Законы Ньютона

Цель работы: В игровой форме обобщить, закрепить знания, полученные по теме, научить видеть проявления изученных закономерностей в окружающей жизни, ...
Сила и законы Ньютона

Сила и законы Ньютона

Первый закон Ньютона. Тело сохраняет состояние покоя до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Рисунки ...
Законы Ньютона

Законы Ньютона

Зако́ны Ньюто́на. Зако́ны Ньюто́на — три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любой механической ...
Законы Ньютона

Законы Ньютона

Исаак Ньютон. Великий физик XVIII Века. Краткая биография.. Выдающийся английский учёный, заложивший основы современного естествознания, создатель ...
Законы Ньютона

Законы Ньютона

Импульс тела. ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА -. В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых ...
Законы Ньютона

Законы Ньютона

КАКИЕ МЫ ЗНАЕМ ВИДЫ ДВИЖЕНИЯ. 1. Равномерное прямолинейное ( скорость постоянна по величине и направлению) 2. Равноускоренное прямолинейное ( скорость ...
Законы Ньютона

Законы Ньютона

Основная задача механики. определить координату и скорость тела в любой момент времени по известным начальным координате и скорости. Первый закон ...
Кинематика криволинейного движения материальной точки

Кинематика криволинейного движения материальной точки

Криволинейное движение. Криволинейное движение тел, которые в данных условиях движения можно принять за материальные точки, часто встречается в повседневной ...
Законы Ньютона

Законы Ньютона

Немного о Ньютоне. Исаак Ньютон родился 4 января (25 декабря) 1643 года в местечке Вулсторп. Отец Ньютона был фермером. Он умер за два месяца до рождения ...
Законы Ньютона

Законы Ньютона

« Не знаю, чем я могу казаться миру, но самому себе кажусь мальчиком, играющим у моря, которому удалось найти более красивый камешек, чем другим: ...
Законы механики Ньютона

Законы механики Ньютона

Введение. Кинематика позволяет определить вид движения, но не объясняет почему тело движется так, а не иначе? Опыты и наблюдения показывают, что:. ...
Законы Ньютона

Законы Ньютона

-Систематизировать изученный материал -Показать особую значимость законов. -Рассмотреть примеры проявления законов Ньютона. ЦЕЛИ. «Был этот мир Глубокой ...
1 2 3 законы Ньютона

1 2 3 законы Ньютона

Первый закон Ньютона. Понятие силы как меры взаимодействия. КОЛИЧЕСТВЕННАЯ МЕРА ДЕЙСТВИЯ ТЕЛ ДРУГ НА ДРУГА НАЗЫВАЕТСЯ СИЛОЙ. Силы в механике: гравитационные, ...
Решение задач по теме Законы Ньютона

Решение задач по теме Законы Ньютона

Повторим теорию. В чем состоит основное утверждение механики? Что в физике понимают под материальной точкой? Сформулируйте первый закон Ньютона. Приведите ...
Закон Ньютона

Закон Ньютона

Оглавление. Силы в природе Закон всемирного тяготения Скорость падающих тел. Гравитация Правда ли?.. Не по теме, но кое что интересное! Ссылки. Силы ...
Взаимодействие тел. Первый закон Ньютона

Взаимодействие тел. Первый закон Ньютона

Основы динамики. Законы Ньютона объясняют, в каких случаях тела сохраняют, а в каких изменяют скорость своего движения. ? ? ? ? ? ·Всякое движение ...
Бином Ньютона

Бином Ньютона

НЬЮТОН - английский математик, механик, астроном и физик, создатель классической механики. Разработал дифференциальное и интегральное исчисления. ...

Конспекты

Законы Ньютона. Свободное падение. Закон всемирного тяготения

Законы Ньютона. Свободное падение. Закон всемирного тяготения

Конспект урока для 9 класса на тему «Законы Ньютона. Свободное падение. Закон всемирного тяготения». . ЦЕЛИ УРОКА. Обучающие:. повторение и закрепление ...
Импульс материальной точки. Закон сохранения импульса. Реактивное движение

Импульс материальной точки. Закон сохранения импульса. Реактивное движение

ТЕМА: Импульс материальной точки. Закон сохранения импульса. Реактивное движение. Цель урока:. Сформировать представления о импульсе материальной ...
Законы Ньютона и закон всемирного тяготения в стихах

Законы Ньютона и закон всемирного тяготения в стихах

7. . Открытый урок по физике в 9 классе. Учитель Хвастов Г. В. . . Тема «Законы Ньютона и закон всемирного тяготения в стихах. И опыт-сын ошибок ...
Законы Ньютона, всемирное тяготение, импульс, закон сохранения импульса

Законы Ньютона, всемирное тяготение, импульс, закон сохранения импульса

Урок с применением сингапурской методики обучения. Автор: учитель физики Казаков Виталий Васильевич. МБОУ «Новоузеевская ОШ». . Решение задач. ...
Законы Ньютона

Законы Ньютона

Векленко Светлана Ильинична. . Приложение №5. Разработка урока в 9 классе по теме «Законы Ньютона». Предлагаемый урок физики проводится ...
Законы Ньютона

Законы Ньютона

Обобщающий урок по теме "Законы Ньютона". . Цель урока. :. создание условий для обобщения и закрепления знаний, полученных по теме “Законы Ньютона”;. ...
Законы Ньютона

Законы Ньютона

. Урок в 10 классе. На уроке используется технология естественного обучения по методике д.п.н. . . Суртаевой Н.Н. . ТЕМА УРОКА. : Обобщение ...
Законы Ньютона

Законы Ньютона

Обобщающий урок по теме « Законы Ньютона», 9 класс. Цели. урока: обобщить и систематизировать знания обучающихся о законах Ньютона. . Задачи. урока: ...
Принцип относительности Галилея. Законы Ньютона

Принцип относительности Галилея. Законы Ньютона

Урок физики. Тема:. Принцип относительности Галилея. Законы Ньютона. Цели:. 1. Сформулировать принцип относительности Галилея. Дать знания ...
Законы Ньютона

Законы Ньютона

Урок по физике 9 класс «Законы Ньютона» (повторение). Цель урока. :. создать условия для обобщения и закрепления знаний, полученных по теме ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.