- Корпускулярно-волновой дуализм

Презентация "Корпускулярно-волновой дуализм" по физике – проект, доклад

Слайд 1
Слайд 2
Слайд 3
Слайд 4
Слайд 5
Слайд 6
Слайд 7
Слайд 8
Слайд 9
Слайд 10
Слайд 11
Слайд 12
Слайд 13
Слайд 14
Слайд 15
Слайд 16
Слайд 17
Слайд 18
Слайд 19
Слайд 20
Слайд 21
Слайд 22
Слайд 23
Слайд 24
Слайд 25
Слайд 26
Слайд 27

Презентацию на тему "Корпускулярно-волновой дуализм" можно скачать абсолютно бесплатно на нашем сайте. Предмет проекта: Физика. Красочные слайды и иллюстрации помогут вам заинтересовать своих одноклассников или аудиторию. Для просмотра содержимого воспользуйтесь плеером, или если вы хотите скачать доклад - нажмите на соответствующий текст под плеером. Презентация содержит 27 слайд(ов).

Слайды презентации

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ Подготовка к ЕГЭ. Учитель: Попова И.А. МОУ СОШ № 30 Белово 2010
Слайд 1

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ Подготовка к ЕГЭ

Учитель: Попова И.А. МОУ СОШ № 30 Белово 2010

Цель: повторение основных понятий, законов и формул КОРПУСКУЛЯРНО-ВОЛНОВОГО ДУАЛИЗМ А в соответствии с кодификатором ЕГЭ. Элементы содержания, проверяемые на ЕГЭ 2010: Гипотеза М.Планка о квантах Фотоэффект Опыты А.Г.Столетова Уравнение Эйнштейна для фотоэффекта Фотон Гипотеза де Бройля о волновых с
Слайд 2

Цель: повторение основных понятий, законов и формул КОРПУСКУЛЯРНО-ВОЛНОВОГО ДУАЛИЗМ А в соответствии с кодификатором ЕГЭ.

Элементы содержания, проверяемые на ЕГЭ 2010: Гипотеза М.Планка о квантах Фотоэффект Опыты А.Г.Столетова Уравнение Эйнштейна для фотоэффекта Фотон Гипотеза де Бройля о волновых свойствах частиц Дифракция электронов

Гипотеза М.Планка о квантах. Абсолютно черное тело обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Интегральная светимость R(T) абсолютно черного тела пропорциональна четвертой степени абсолютной температуры T: Гипотеза Планка: процессы изл
Слайд 3

Гипотеза М.Планка о квантах

Абсолютно черное тело обладает свойством поглощать всю падающую на его поверхность лучистую энергию любого спектрального состава. Интегральная светимость R(T) абсолютно черного тела пропорциональна четвертой степени абсолютной температуры T: Гипотеза Планка: процессы излучения и поглощения нагретым телом электромагнитной энергии, происходят не непрерывно, как это принимала классическая физика, а конечными порциями – квантами.

Модель абсолютно черного тела

Квант – это минимальная порция энергии, излучаемой или поглощаемой телом. Энергия кванта E прямо пропорциональна частоте света: где h – так называемая постоянная Планка, равная h = 6,626·10–34 Дж·с.

Фотоэффект. Фотоэффектом называют вырывание электронов из вещества под действием света. Фотоэффект был открыт Г. Герцем (1887 г.). Теория фотоэффекта была развита А. Эйнштейном (1905 г.) на основе квантовых представлений. Классическая волновая теория света оказалась неспособной объяснить закономерно
Слайд 4

Фотоэффект

Фотоэффектом называют вырывание электронов из вещества под действием света.

Фотоэффект был открыт Г. Герцем (1887 г.). Теория фотоэффекта была развита А. Эйнштейном (1905 г.) на основе квантовых представлений. Классическая волновая теория света оказалась неспособной объяснить закономерности этого явления.

Корпускулярно-волновой дуализм Слайд: 5
Слайд 5
Законы фотоэффекта. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света. Фотоэффект практически безынерционен, фототок
Слайд 6

Законы фотоэффекта

Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > νmin. Для каждого вещества существует так называемая красная граница фотоэффекта, т. е. наименьшая частота νmin, при которой еще возможен внешний фотоэффект.

Ток насыщения

Задерживающее напряжение

Зависимость запирающего потенциала Uз от частоты ν падающего света. Зависимость силы фототока от приложенного напряжения.
Слайд 7

Зависимость запирающего потенциала Uз от частоты ν падающего света

Зависимость силы фототока от приложенного напряжения.

Опыты А.Г.Столетова. В 1888 г. русский физик А.Г.Столетов переоткрыл и подробно изучил явление внешнего фотоэффекта. Для своих опытов с фотоэффектом Столетов сконструировал особый прибор - вакуумный фотоэлемент. Два металлических диска. Электрический фонарь Дюбоска. Зеркальный гальванометр. Лампа с
Слайд 8

Опыты А.Г.Столетова

В 1888 г. русский физик А.Г.Столетов переоткрыл и подробно изучил явление внешнего фотоэффекта. Для своих опытов с фотоэффектом Столетов сконструировал особый прибор - вакуумный фотоэлемент.

Два металлических диска

Электрический фонарь Дюбоска

Зеркальный гальванометр

Лампа с вольтовой дугой

Гальванические батареи

Выводы Столетова А.Г. Лучи вольтовой дуги, падая на поверхность отрицательно заряженного тела, уносят с него заряд... Это действие лучей есть строго униполярное, положительный заряд лучами не уносится. Разряжающим действием обладают — если не исключительно, то с громадным превосходством перед прочим
Слайд 9

Выводы Столетова А.Г.

Лучи вольтовой дуги, падая на поверхность отрицательно заряженного тела, уносят с него заряд... Это действие лучей есть строго униполярное, положительный заряд лучами не уносится. Разряжающим действием обладают — если не исключительно, то с громадным превосходством перед прочими — лучи самой высокой преломляемости, недостающие в солнечном спектре (λ = 295•10–6 мм). Чем спектр обильнее такими лучами, тем сильнее действие. Для разряда лучами необходимо, чтобы лучи поглощались поверхностью тела...

Разряжающее действие лучей обнаруживается даже при весьма кратковременном освещении, причем между моментом освещения и моментом соответственного разряда не протекает заметного времени. Разряжающее действие, при одинаковых условиях, пропорционально энергии активных лучей, падающих на разряжаемую пове
Слайд 10

Разряжающее действие лучей обнаруживается даже при весьма кратковременном освещении, причем между моментом освещения и моментом соответственного разряда не протекает заметного времени. Разряжающее действие, при одинаковых условиях, пропорционально энергии активных лучей, падающих на разряжаемую поверхность. Каков бы ни был механизм активно-электрического разряда, мы вправе рассматривать его как некоторый ток электричества... Активно-электрическое действие усиливается с повышением температуры

Уравнение Эйнштейна для фотоэффекта. Работа выхода A где c – скорость света, λкр – длина волны, соответствующая красной границе фотоэффекта. h = 4,136·10–15 эВ·с – постоянная Планка; Кинетическая энергия электронов Энергия фотонов. E = hν
Слайд 11

Уравнение Эйнштейна для фотоэффекта

Работа выхода A где c – скорость света, λкр – длина волны, соответствующая красной границе фотоэффекта. h = 4,136·10–15 эВ·с – постоянная Планка; Кинетическая энергия электронов Энергия фотонов

E = hν

Фотон. Фотон - (от греч. phos, родительный падеж photós – свет), элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Заряд фотона равен нулю Энергия фотона Импульс фотона. m = 0
Слайд 12

Фотон

Фотон - (от греч. phos, родительный падеж photós – свет), элементарная частица, квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Заряд фотона равен нулю Энергия фотона Импульс фотона

m = 0

Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм присущ всем частицам — электронам, протонам, атомам и так далее, причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и для фотонов. Таким образом, если частица имеет энергию E
Слайд 13

Гипотеза де Бройля о волновых свойствах частиц

Корпускулярно-волновой дуализм присущ всем частицам — электронам, протонам, атомам и так далее, причём количественные соотношения между волновыми и корпускулярными свойствами частиц те же, что и для фотонов. Таким образом, если частица имеет энергию E и импульс p, то с ней связана волна, частота которой f = E / h длина волны λ = h / p. Эти волны и получили название волн де Бройля.

Дифракция электронов. Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота В случае (b) видны точки попадания отдельных электронов на фотопластинку Длина волны де Бройля для электрона. Упрощенная схема опытов Дж. Томсон
Слайд 14

Дифракция электронов

Томсон наблюдал дифракционную картину, возникающую при прохождении пучка электронов через тонкую поликристаллическую фольгу из золота В случае (b) видны точки попадания отдельных электронов на фотопластинку Длина волны де Бройля для электрона

Упрощенная схема опытов Дж. Томсона по дифракции электронов

Накаливаемый катод

Анод Фольга из золота

Картина дифракции электронов на поликристаллическом образце а) - при длительной экспозиции b) - при короткой экспозиции

Рассмотрим задачи: ЕГЭ 2001-2010 (Демо, КИМ) ГИА-9 2008-2010 (Демо)
Слайд 15

Рассмотрим задачи:

ЕГЭ 2001-2010 (Демо, КИМ) ГИА-9 2008-2010 (Демо)

(ЕГЭ 2002 г., Демо) А22. Масса Солнца уменьшается за счет испускания. только заряженных частиц только незаряженных частиц только электромагнитных волн различного диапазона частиц и электромагнитных волн
Слайд 16

(ЕГЭ 2002 г., Демо) А22. Масса Солнца уменьшается за счет испускания

только заряженных частиц только незаряженных частиц только электромагнитных волн различного диапазона частиц и электромагнитных волн

(ЕГЭ 2003 г., демо) А23. На рисунке приведены варианты графика зависимости максимальной энергии фотоэлектронов от энергии падающих на фотокатод фотонов. В каком случае график соответствует законам фотоэффекта? 1 2 3 4
Слайд 17

(ЕГЭ 2003 г., демо) А23. На рисунке приведены варианты графика зависимости максимальной энергии фотоэлектронов от энергии падающих на фотокатод фотонов. В каком случае график соответствует законам фотоэффекта?

1 2 3 4

(ЕГЭ 2004 г., демо) А19. Энергия фотона равна
Слайд 18

(ЕГЭ 2004 г., демо) А19. Энергия фотона равна

(ЕГЭ 2004 г., демо) А27. Волновыми свойствами. обладает только фотон обладает только электрон обладают как фотон, так и электрон не обладают ни фотон, ни электрон
Слайд 19

(ЕГЭ 2004 г., демо) А27. Волновыми свойствами

обладает только фотон обладает только электрон обладают как фотон, так и электрон не обладают ни фотон, ни электрон

(ЕГЭ 2005 г., ДЕМО) А23. Фотоны с энергией 2,1 эВ вызывают фотоэффект с поверхности цезия, для которого работа выхода равна 1,9 эВ. Чтобы максимальная кинетическая энергия фотоэлектронов увеличилась в 2 раза, нужно увеличить энергию фотона на. 0,1 эВ 0,2 эВ 0,3 эВ 0,4 эВ
Слайд 20

(ЕГЭ 2005 г., ДЕМО) А23. Фотоны с энергией 2,1 эВ вызывают фотоэффект с поверхности цезия, для которого работа выхода равна 1,9 эВ. Чтобы максимальная кинетическая энергия фотоэлектронов увеличилась в 2 раза, нужно увеличить энергию фотона на

0,1 эВ 0,2 эВ 0,3 эВ 0,4 эВ

(ЕГЭ 2007 г., ДЕМО) А25. Энергия фотона, поглощаемого атомом при переходе из основного состояния с энергией E0 в возбужденное состояние с энергией E1, равна
Слайд 21

(ЕГЭ 2007 г., ДЕМО) А25. Энергия фотона, поглощаемого атомом при переходе из основного состояния с энергией E0 в возбужденное состояние с энергией E1, равна

(ЕГЭ 2007 г., ДЕМО) А29. Красная граница фотоэффекта исследуемого металла соответствует длине волны кр = 600 нм. При освещении этого металла светом длиной волны  максимальная кинетическая энергия выбитых из него фотоэлектронов в 3 раза меньше энергии падающего света. Какова длина волны  падающего
Слайд 22

(ЕГЭ 2007 г., ДЕМО) А29. Красная граница фотоэффекта исследуемого металла соответствует длине волны кр = 600 нм. При освещении этого металла светом длиной волны  максимальная кинетическая энергия выбитых из него фотоэлектронов в 3 раза меньше энергии падающего света. Какова длина волны  падающего света?

133 нм 300 нм 400 нм 1200 нм

(ЕГЭ 2008 г., ДЕМО) А29. В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4⋅10–19 Дж и стали освещать ее светом частоты 6⋅1014 Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектроно
Слайд 23

(ЕГЭ 2008 г., ДЕМО) А29. В опытах по фотоэффекту взяли пластину из металла с работой выхода 3,4⋅10–19 Дж и стали освещать ее светом частоты 6⋅1014 Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с,

увеличилось в 1,5 раза стало равным нулю уменьшилось в 2 раза уменьшилось более чем в 2 раза

(ЕГЭ 2009 г., ДЕМО) А23. Фотоэффект наблюдают, освещая поверхность металла светом фиксиро-ванной частоты. При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на ΔU = 1,2 В. На сколько изменилась частота падающего света? 1,
Слайд 24

(ЕГЭ 2009 г., ДЕМО) А23. Фотоэффект наблюдают, освещая поверхность металла светом фиксиро-ванной частоты. При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на ΔU = 1,2 В. На сколько изменилась частота падающего света?

1,8·1014 Гц 2,9·1014 Гц 6,1·1014 Гц 1,9·1015 Гц

(ЕГЭ 2010 г., ДЕМО) А23. Дан график зависимости числа нераспавшихся ядер эрбия от времени. Каков период полураспада этого изотопа? 25 часов 50 часов 100 часов 200 часов
Слайд 25

(ЕГЭ 2010 г., ДЕМО) А23. Дан график зависимости числа нераспавшихся ядер эрбия от времени. Каков период полураспада этого изотопа?

25 часов 50 часов 100 часов 200 часов

(ЕГЭ 2010 г., ДЕМО) А23. Для опытов по фотоэффекту взяли пластину из металла с работой выхода 3,4⋅10–19 Дж и стали освещать ее светом частоты 6⋅1014 Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектро
Слайд 26

(ЕГЭ 2010 г., ДЕМО) А23. Для опытов по фотоэффекту взяли пластину из металла с работой выхода 3,4⋅10–19 Дж и стали освещать ее светом частоты 6⋅1014 Гц. Затем частоту уменьшили в 2 раза, одновременно увеличив в 1,5 раза число фотонов, падающих на пластину за 1 с. В результате этого число фотоэлектронов, покидающих пластину за 1 с,

Используемая литература. Берков, А.В. и др. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010, Физика [Текст]: учебное пособие для выпускников. ср. учеб. заведений / А.В. Берков, В.А. Грибов. – ООО "Издательство Астрель", 2009. – 160 с. Касьянов, В.А. Физика, 11 класс [Текст
Слайд 27

Используемая литература

Берков, А.В. и др. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010, Физика [Текст]: учебное пособие для выпускников. ср. учеб. заведений / А.В. Берков, В.А. Грибов. – ООО "Издательство Астрель", 2009. – 160 с. Касьянов, В.А. Физика, 11 класс [Текст]: учебник для общеобразовательных школ / В.А. Касьянов. – ООО "Дрофа", 2004. – 116 с. Квантовая физика. Электронный каталог учебных таблиц / http://www.posobiya.ru/SREDN_SKOOL/PHISIC/N131/index.html Мякишев, Г.Я. и др. Физика. 11 класс [Текст]: учебник для общеобразовательных школ / учебник для общеобразовательных школ Г.Я. Мякишев, Б.Б. Буховцев . –" Просвещение ", 2009. – 166 с. Опыт Столетова А.Г. PHYSBOOK.RU/ http://www.physbook.ru/index.php/%D0%9E%D0%BF%D1%8B%D1%82_%D0%A1%D1%82%D0%BE%D0%BB%D0%B5%D1%82%D0%BE%D0%B2%D0%B0_%D0%90.%D0%93. Открытая физика [текст, рисунки]/ http://www.physics.ru Подготовка к ЕГЭ /http://egephizika Полный комплект цветных таблиц по физике. Весь курс средней школы 100 таблиц формата А1. . Издательство ВАРСОН / http://www.varson.ru/physics_ser9kvant.html Федеральный институт педагогических измерений. Контрольные измерительные материалы (КИМ) Физика //[Электронный ресурс]// http://fipi.ru/view/sections/92/docs/ Фотон. Большая советская энциклопедия. Яндекс-словари / http://slovari.yandex.ru/dict/bse/article/00085/02500.htm Фотоэффект. Единая коллекция цифровых образовательных ресурсов / http://school-collection.edu.ru/catalog/search/?text=%D4%EE%F2%EE%FD%F4%F4%E5%EA%F2&tg=

Список похожих презентаций

Что такое свет? Корпускулярно-волновой дуализм

Что такое свет? Корпускулярно-волновой дуализм

Мастер-класс по теме:. «Что такое свет? Корпускулярно-волновой дуализм». «Что такое свет?». 1) Свет – поток частиц. 2) сВет - волна. Если при движении, ...
Корпускулярно-волновой дуализм Луи де Бройля

Корпускулярно-волновой дуализм Луи де Бройля

Гейзенберг родился в тот год, когда была напечатана знаменитая работа Планка. Когда он заканчивал гимназию, его родина Германия воевала со всем миром: ...
Трудности теории Бора. Квантово-волновой дуализм

Трудности теории Бора. Квантово-волновой дуализм

Трудности теории Бора. В теории Бора сохранились представления об орбитальном движении электронов в кулоновском поле ядра. Классическая ядерная модель ...

Конспекты

Корпускулярно-волновой дуализм. Гипотеза де Бройля о волновых свойствах частиц. Соотношение неопределённостей Гейзенберга. Законы отражения и преломления света; поляризация, дисперсия света

Корпускулярно-волновой дуализм. Гипотеза де Бройля о волновых свойствах частиц. Соотношение неопределённостей Гейзенберга. Законы отражения и преломления света; поляризация, дисперсия света

Урок № 56-169 Корпускулярно-волновой дуализм. Гипотеза де Бройля о волновых свойствах частиц. Соотношение неопределённостей Гейзенберга. Законы отражения ...
Квантово - волновой дуализм или волновые и квантовые свойства света и вещества

Квантово - волновой дуализм или волновые и квантовые свойства света и вещества

Урок – семинар. Орлова Н.Г. – учитель физики МБОУ «Тучковская СОШ №3». Тема урока:. « Квантово - волновой дуализм или волновые и квантовые свойства ...

Советы как сделать хороший доклад презентации или проекта

  1. Постарайтесь вовлечь аудиторию в рассказ, настройте взаимодействие с аудиторией с помощью наводящих вопросов, игровой части, не бойтесь пошутить и искренне улыбнуться (где это уместно).
  2. Старайтесь объяснять слайд своими словами, добавлять дополнительные интересные факты, не нужно просто читать информацию со слайдов, ее аудитория может прочитать и сама.
  3. Не нужно перегружать слайды Вашего проекта текстовыми блоками, больше иллюстраций и минимум текста позволят лучше донести информацию и привлечь внимание. На слайде должна быть только ключевая информация, остальное лучше рассказать слушателям устно.
  4. Текст должен быть хорошо читаемым, иначе аудитория не сможет увидеть подаваемую информацию, будет сильно отвлекаться от рассказа, пытаясь хоть что-то разобрать, или вовсе утратит весь интерес. Для этого нужно правильно подобрать шрифт, учитывая, где и как будет происходить трансляция презентации, а также правильно подобрать сочетание фона и текста.
  5. Важно провести репетицию Вашего доклада, продумать, как Вы поздороваетесь с аудиторией, что скажете первым, как закончите презентацию. Все приходит с опытом.
  6. Правильно подберите наряд, т.к. одежда докладчика также играет большую роль в восприятии его выступления.
  7. Старайтесь говорить уверенно, плавно и связно.
  8. Старайтесь получить удовольствие от выступления, тогда Вы сможете быть более непринужденным и будете меньше волноваться.

Информация о презентации

Ваша оценка: Оцените презентацию по шкале от 1 до 5 баллов
Дата добавления:14 сентября 2014
Категория:Физика
Автор презентации:Попова И.А.
Содержит:27 слайд(ов)
Поделись с друзьями:
Скачать презентацию
Смотреть советы по подготовке презентации